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1. Introduction. Let St be the standard representation of GL(2, C)
and V(/c, r)a representation space of det (R)Sym St. We denote the full
Siegel modular group of degree two by/.. A C-Siegel modular form f
of type (/, r) and of degree two is a V(k, r) valued C-function on the Siegel
upper half plane H of degree two satisfying the equation

f((AZ+B)(CZ+D)-) (det(R)Sym St)(CZ+D)f(Z)

for allM=
6’ D eF

and the usual growth rate condition (see Borel [2, 7]). We denote by
M’,(/’) the C-veetor space of all such functions. We pu

M,(/-’.) {f e M’,(F) f is holomorphie on H.}.
We shall explicitly construct M,(F)tor even k and prove some congru-
ences of eigenvalues of I-Ieeke operators. Details of this paper are included
in [8]. The author would like to thank Prof. R. Tsushima tor communi-
cating his paper [18] before publication and Prof. N. Kurokawa for his
encouragement.

2. Construction of modular forms of type (k, 2). Let S be the C-
vector space of complex symmetric matrices of size two. The represen-
tation of GL(2, C) defined via A-det (G)GAG for G e GL(2, C) and A e
is equivalent to. det(R)Sym St. Henceforth, we put V(/, 2)=S.. We denote
by M(F) the C-vector space of C-Siegel modular forms of degree n and
weight k. Let M(F) and S(F) be subspaces of M(F)consisting of
holomorphic Siegel modular forms and of holomorphic cusp forms, respec-
tively. We agree that M(F.)= {0} for a negative k. For a variable

(ZlZ)onH.weputZ=
Z3 Z2

y_ 1_(Z--Z) and d 3z -" 3z3
2i dZ 1 3 3

We define a differential operator 17=17 acting on M(F) by

f
k (2iY)_f 1 d f
2i 2zi dZ

By Shimura [11, (4.5)], we have 17f e M,2(F2) for f e M(F2). For f e M(F)
and g e M(F), we put
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[f’ g]--
dZ f--f2 dZ

g

Then, we have [f, g] e M/,.(F). We use usual notation for particular
modular orms (see Resnikoff and Saldafia [7], Igusa [3] and Kurokawa
[4]). The following theorem is our main result.

Theorem 1. For an even integer k>=O, we have (as a C-vector space)
M,(F)--M_0(F)[, o]M_(F)[,

( 1 ) @M_(F)[, Z]V_o(F)[o, Z0]
V_(F)[, z]w_(F)[Z,o,

where
V(F)--M(F) C[, Zo, Z] and
W(F)-M(F) I"l C[z0, z].

The proof is as follows’the inclusion D is trivial. Using the dimension
formula obtained by Tsushima[12, Theorem 4], we see that the right hand
side of (1) spans the left hand side.

A modular form f is said to be an eigenform if f is a non-zero common
eigen function of all Hecke operators. We denote by 2(m, f) the eigenvalue
of the m-th Hecke operator normalized as in Arakawa [1, p. 164]. We put
Q(f) Q((m, f)]m 1).

Corollary 2. Let f e M,(F) be an eigenform for an even integer
Ic_O. Then, Q(f) is a totally real finite extension of Q, and eigenvalues
(m, f) are algebraic integers.

The next theorem is utilized for the proof of congruences (4) below.
Theorem 3. Let f e M,.(FO for an even integer k>=O. Then there

exists a unique C-modular form D(f) e M+(F) satisfying the following
conditions (a) and (b).
(a) With respect to the Petersson inner product, D(f) is orthogonal to

each holomorphic cusp form g e S+.(F).
(b) The function H(f) defined by

1 1 Tr (2Yf)H(f) D(f)--- det (2Y)
is holomorphic on H and has the Fourier expansion of the form

H(f)(Z)-- , a(N, H(f)) exp (2i Tr (NZ)),
N>O

where N runs over all positive definite semi-integral matrices of size
two.

Moreover D(f) is an eigenform if f is an eigenform.

3o Congruence formulas. For a cusp form f e S+(FJ, we denote
by [f] e M,(F) the Klingen type Eisenstein series attached to f. Note

[f].---E,(Z,-. f,--.( 00))in the notation of Arakawa [1, (1.4)]. If f is an

eigenform, we see that [f] is characterized as a unique eigenform satis-

fying (O[f])(z)---f(z)( 0). Using Theorem 1we see that an eigen basis of

M,(F) is {[z/], [, Z,0]}. Then we have the following congruence formulas
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for all m> 1
( 2 ) ,(m, [z/].)=(m, [, Z0]) mod 878,
( 8 ) m,(m, Z)=,(m, [, ;0]) mod 5.7,
( 4 ) N/(m(m, [o, Z0])-- (m, Z;)))=0 mod 13,
where K=Q(/51849 ) and Nx/ is the norm map (cf. Kurokawa [4, 8]).
We note an interpretation concerning congruence (2) above. Let
be an eigen form, L(s, f) the second L-function attached to f and <f, f>
its Petersson inner product normalized as in Shimura [10, (2.1)]. Put
L*(s, f)=L2(s, f)(2)-(-/)F(s)/<f, f>. Then, L2*(s, f) belongs to Q(f) for
each even integer s satisfying k<s<2k-2 by Zagier [14, Theorem 2].
Numerical computation shows 8781L*(28, z/). Here we note 28=2(k+ r)
--2--r with k=14 and r=2. More generally we expect that L*(2(k+r)
--2-r, f) appears in the denominator o.f Fourier coefficients of [f]. The
case r=0 is proved in Mizumoto [6] (cf. Kurokawa [5]). On the other
hand, congruences (8) and (4) correspond to. the different weight case
treated by Serre [9, Theorem 10, case (i)]. Hence, primes appearing ir
congruences of this type would be rather small.
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