63. Construction of Certain Vector Valued Siegel Modular Forms of Degree two

By Takakazu Sator
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. A., Sept. 12, 1985)

§1. Introduction. Let St be the standard representation of $G L(2, C)$ and $V(k, r)$ a representation space of $\operatorname{det}^{k} \otimes \operatorname{Sym}^{r}$ St. We denote the full Siegel modular group of degree two by Γ_{2}. A C^{∞}-Siegel modular form f of type (k, r) and of degree two is a $V(k, r)$ valued C^{∞}-function on the Siegel upper half plane H_{2} of degree two satisfying the equation

$$
\begin{aligned}
f\left((A Z+B)(C Z+D)^{-1}\right) & =\left(\operatorname{det}^{k} \otimes \operatorname{Sym}^{r} \operatorname{St}\right)(C Z+D) f(Z) \\
\text { for all } M & =\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right) \in \Gamma_{2}
\end{aligned}
$$

and the usual growth rate condition (see Borel [2, § 7]). We denote by $M_{k, r}^{\infty}\left(\Gamma_{2}\right)$ the C-vector space of all such functions. We put

$$
M_{k, r}\left(\Gamma_{2}\right)=\left\{f \in M_{k, r}^{\infty}\left(\Gamma_{2}\right) \mid f \text { is holomorphic on } H_{2}\right\} .
$$

We shall explicitly construct $M_{k, 2}\left(\Gamma_{2}\right)$ for even k and prove some congruences of eigenvalues of Hecke operators. Details of this paper are included in [8]. The author would like to thank Prof. R. Tsushima for communicating his paper [13] before publication and Prof. N. Kurokawa for his encouragement.
§2. Construction of modular forms of type ($k, 2$). Let S_{2} be the C vector space of complex symmetric matrices of size two. The representation of $G L(2, C)$ defined via $A \rightarrow \operatorname{det}(G)^{k} G A^{t} G$ for $G \in G L(2, C)$ and $A \in S_{2}$ is equivalent to $\operatorname{det}^{k} \otimes \mathrm{Sym}^{2}$ St. Henceforth, we put $V(k, 2)=S_{2}$. We denote by $M_{k}^{\infty}\left(\Gamma_{n}\right)$ the C-vector space of C^{∞}-Siegel modular forms of degree n and weight k. Let $M_{k}\left(\Gamma_{n}\right)$ and $S_{k}\left(\Gamma_{n}\right)$ be subspaces of $M_{k}^{\infty}\left(\Gamma_{n}\right)$ consisting of holomorphic Siegel modular forms and of holomorphic cusp forms, respectively. We agree that $M_{k}\left(\Gamma_{2}\right)=\{0\}$ for a negative k. For a variable $Z=\left(\begin{array}{ll}z_{1} & z_{3} \\ z_{3} & z_{2}\end{array}\right)$ on H_{2} we put

$$
Y=\frac{1}{2 i}(Z-\bar{Z}) \quad \text { and } \quad \frac{d}{d Z}=\left(\begin{array}{cc}
\frac{\partial}{\partial z_{1}} & \frac{1}{2} \cdot \frac{\partial}{\partial z_{3}} \\
\frac{1}{2} \cdot \frac{\partial}{\partial z_{3}} & \frac{\partial}{\partial z_{2}}
\end{array}\right)
$$

We define a differential operator $\nabla=\nabla_{k}$ acting on $M_{k}\left(\Gamma_{2}\right)$ by

$$
\nabla f=\frac{k}{2 \pi i}(2 i Y)^{-1} f+\frac{1}{2 \pi i} \frac{d}{d Z} f
$$

By Shimura [11, (4.5)], we have $\nabla f \in M_{k, 2}^{\infty}\left(\Gamma_{2}\right)$ for $f \in M_{k}\left(\Gamma_{2}\right)$. For $f \in M_{k}\left(\Gamma_{2}\right)$ and $g \in M_{j}\left(\Gamma_{2}\right)$, we put

$$
[f, g]=\frac{1}{2 \pi i}\left(\frac{1}{k} g \frac{d}{d Z} f-\frac{1}{j} f \frac{d}{d Z} g\right) .
$$

Then, we have $[f, g] \in M_{k+j_{2}}\left(\Gamma_{2}\right)$. We use usual notation for particular modular forms (see Resnikoff and Saldaña [7], Igusa [3] and Kurokawa [4]). The following theorem is our main result.

Theorem 1. For an even integer $k \geqq 0$, we have (as a C-vector space)

$$
\begin{align*}
M_{k, 2}\left(\Gamma_{2}\right)= & M_{k-10}\left(\Gamma_{2}\right)\left[\varphi_{1,}, \varphi_{6} \oplus M_{k-14}\left(\Gamma_{2}\right)\left[\varphi_{4}, \chi_{10}\right]\right. \\
& \oplus M_{k-16}\left(\Gamma_{2}\right)\left[\varphi_{6}, \chi_{12} \oplus V_{k-18}\left(\Gamma_{2}\right)\left[\varphi_{8}, x_{10}\right]\right. \tag{1}\\
& \oplus V_{k-18}\left(\Gamma_{2}\right)\left[\varphi_{8,}, \chi_{12} \oplus W_{k-22}\left(\Gamma_{2}\right)\left[\chi_{10}, \chi_{12}\right]\right.
\end{align*}
$$

where

$$
\begin{aligned}
& V_{k}\left(\Gamma_{2}\right)=M_{k}\left(\Gamma_{2}\right) \cap \boldsymbol{C}\left[\varphi_{6}, \chi_{10}, \chi_{12}\right] \quad \text { and } \\
& W_{k}\left(\Gamma_{2}\right)=M_{k}\left(\Gamma_{2}\right) \cap \boldsymbol{C}\left[\chi_{10}, \chi_{12}\right] .
\end{aligned}
$$

The proof is as follows : the inclusion \supset is trivial. Using the dimension formula obtained by Tsushima[12, Theorem 4], we see that the right hand side of (1) spans the left hand side.

A modular form f is said to be an eigenform if f is a non-zero common eigen function of all Hecke operators. We denote by $\lambda(m, f)$ the eigenvalue of the m-th Hecke operator normalized as in Arakawa [1, p.164]. We put $\boldsymbol{Q}(f)=\boldsymbol{Q}(\lambda(m, f) \mid m \geqq 1)$.

Corollary 2. Let $f \in M_{k, 2}\left(\Gamma_{2}\right)$ be an eigenform for an even integer $k \geqq 0$. Then, $\boldsymbol{Q}(f)$ is a totally real finite extension of \boldsymbol{Q}, and eigenvalues $\lambda(m, f)$ are algebraic integers.

The next theorem is utilized for the proof of congruences (4) below.
Theorem 3. Let $f \in M_{k, 2}\left(\Gamma_{2}\right)$ for an even integer $k \geqq 0$. Then there exists a unique C^{∞}-modular form $D(f) \in M_{k+2}^{\infty}\left(\Gamma_{2}\right)$ satisfying the following conditions (a) and (b).
(a) With respect to the Petersson inner product, $D(f)$ is orthogonal to each holomorphic cusp form $g \in S_{k+2}\left(\Gamma_{2}\right)$.
(b) The function $H(f)$ defined by

$$
H(f)=D(f)-\frac{1}{2} \frac{1}{\operatorname{det}(2 \pi Y)} \operatorname{Tr}(2 \pi Y f)
$$

is holomorphic on H_{2} and has the Fourier expansion of the form

$$
H(f)(Z)=\sum_{N>0} a(N, H(f)) \exp (2 \pi i \operatorname{Tr}(N Z)),
$$

where N runs over all positive definite semi-integral matrices of size two.
Moreover $D(f)$ is an eigenform if f is an eigenform.
§3. Congruence formulas. For a cusp form $f \in S_{k+r}\left(\Gamma_{1}\right)$, we denote by $[f]_{r} \in M_{k, r}\left(\Gamma_{2}\right)$ the Klingen type Eisenstein series attached to f. Note $[f]_{2}=E_{k, 2}\left(Z, f,\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)\right)$ in the notation of Arakawa [1, (1.4)]. If f is an eigenform, we see that $[f]_{2}$ is characterized as a unique eigenform satisfying $\left(\Phi[f]_{2}\right)(z)=f(z)\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right)$. Using Theorem 1 we see that an eigen basis of $M_{1,2}\left(\Gamma_{2}\right)$ is $\left\{\left[\Lambda_{18}\right]_{2},\left[\varphi_{4}, \chi_{10}\right]\right\}$. Then we have the following congruence formulas
for all $m \geqq 1$:
(2)

$$
\lambda\left(m,\left[\Lambda_{16}\right]_{2}\right) \equiv \lambda\left(m,\left[\varphi_{4}, \chi_{10}\right]\right) \bmod 373,
$$

(3)
$m \lambda\left(m, \chi_{14}\right) \equiv \lambda\left(m,\left[\varphi_{4}, \chi_{10}\right]\right) \bmod 5 \cdot 7$,
(4) $\quad \mathrm{N}_{K / Q}\left(m \lambda\left(m,\left[\varphi_{4}, \chi_{10}\right]\right)-\lambda\left(m, \chi_{10}^{(\pm)}\right)\right) \equiv 0 \bmod 13$, where $K=\boldsymbol{Q}(\sqrt{51349})$ and $\mathrm{N}_{K / Q}$ is the norm map (cf. Kurokawa [4, §3]). We note an interpretation concerning congruence (2) above. Let $f \in S_{k}\left(\Gamma_{1}\right)$ be an eigen form, $L_{2}(s, f)$ the second L-function attached to f and $\langle f, f\rangle$ its Petersson inner product normalized as in Shimura [10, (2.1)]. Put $L_{2}^{*}(s, f)=L_{2}(s, f)(2 \pi)^{-(2 s-k+2)} \Gamma(s) /\langle f, f\rangle$. Then, $L_{2}^{*}(s, f)$ belongs to $\boldsymbol{Q}(f)$ for each even integer s satisfying $k \leqq s \leqq 2 k-2$ by Zagier [14, Theorem 2]. Numerical computation shows $373 \mid L_{2}^{*}\left(28, \Delta_{18}\right)$. Here we note $28=2(k+r)$ $-2-r$ with $k=14$ and $r=2$. More generally we expect that $L_{2}^{*}(2(k+r)$ $-2-r, f)$ appears in the denominator of Fourier coefficients of $[f]_{r}$. The case $r=0$ is proved in Mizumoto [6] (cf. Kurokawa [5]). On the other hand, congruences (3) and (4) correspond to the different weight case treated by Serre [9, Theorem 10, case (i)]. Hence, primes appearing in congruences of this type would be rather small.

References

[1] T. Arakawa: Vector valued Siegel's modular forms of degree two and the associated Andrianov L-functions. Manuscripta Math., 44, 155-185 (1983).
[2] A. Borel: Introduction to automorphic forms. Proc. Sympos. Pure Math., vol. 9, AMS, pp. 199-210 (1966).
[3] J. Igusa: On the ring of modular forms of degree two over Z. Amer. J. Math., 101, 149-193 (1979).
[4] N. Kurokawa: Examples of eigenvalues of Hecke operators on Siegel cusp forms of degree two. Invent. Math., 49, 149-165 (1978).
[5] -: Congruences between Siegel modular forms of degree two. Proc. Japan Acad., 55A, 417-422 (1979).
[6] S. Mizumoto: Fourier coefficients of generalized Eisenstein series of degree two. I. Invent. Math., 65, 115-135 (1981).
[7] H. L. Resnikoff and R. L. Saldaña: Some properties of Fourier coefficients of Eisenstein series of degree two. J. Reine Angew. Math., 265, 90-109 (1974).
[8] T. Satoh: On certain vector valued Siegel modular forms of degree two (1985) (preprint).
[9] J.-P. Serre: Congruences et formes modulaires. Séminaire Bourbaki, Exp. 416 (June 1972). Lect. Notes in Math., vol. 317, Springer, pp. 319-339 (1973).
[10] G. Shimura: The special values of the zeta functions associated with cusp forms. Comm. Pure Appl. Math., 29, 783-804 (1976).
[11] -: On the derivatives of theta functions and modular forms. Duke Math. J., 44, 365-387 (1977).
[12] R. Tsushima: An explicit dimension formula for the spaces of generalized automorphic form with respect to $\operatorname{Sp}(2, \boldsymbol{Z})$. Proc. Japan Acad., 59A, 139-142 (1983).
[13] -: An explicit dimension formula for the spaces of generalized automorphic form with respect to $\operatorname{Sp}(2, Z)$ (preprint).
[14] D. Zagier: Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields. Lect. Notes in Math., vol. 627, Springer, pp. 105-169 (1977).

