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Recently R. A. Johnson gave us a linear almost periodic differential
equation with an almost automorphic solution which is not almost periodic
[1]. In this paper we study almost automorphic functions and obtain a
characterization of them by using Veech’s result and Levitan’s N-almost
periodic functions.

We denote the set of real numbers by E. Let X be a metric space with
the metric d,. A continuous mapping z: X X R—X is called a flow on (a
phase space) X if r satisfies following two conditions :

1) n(x, 0)=2 for xe X.

2) nlx(x, t), s)=n(x, t+s) forxe X and ¢, se R.

The orbit through xe X of = is denoted by C.(x). McCX is called an
invariant set of z if C.(x)C M for every x € M. The restriction of = to an
invariant set M of r is denoted by n|M. A non-empty compact invariant
set M of r is called a minimal set of = if C,(x)=M for every x € M, where
C.(x) is the closure of C.(x). If X is itself a minimal set, we say that = is
a minimal flow on X. A flow z is said to be equicontinuous if for each
e>0 there exists a §>0 such that dy(z(x, t), n(y, £))<e for z, y ¢ X with
dx(x, y)<d and for t e R. A point ze X is called an almost automorphic
point if for each sequence {¢,} C R there exists a subsequence {t,,} C{¢,} such
that z(z, ¢,,)»ye X and z(y, —t,)—>2 as k—>co. We denote the set of
almost automorphic points of = by A(z). We can easily see that if x ¢ A(n),
then C,(x) is a minimal set of =, and that A(z) is an invariant set of . A
minimal flow =z is said to be almost automorphic if A(zx)>x¢. Let n be a
minimal flow on X. Ae R is called an eigenvalue of n if there exists a
continuous function X : X—K such that the relation X(z(x, t)) =X(x)exp (2ziit)
holds for (x, t) e X X R, where K is the unit circle in the complex plane. In
this case X is called an eigenfunction of = belonging to 2. We denote the
set of eigenvalues of = by A(z). It is well known that A(z) is a countable
subgroup of R for any minimal flow.

Proposition 1. Let n be an equicontinuous minimal flow on X. Then,
if a sequence {t,}C R satisfies that lim, ., exp 2riit,)=1 for every 2e A(xn),
then we have n(x, t,)—x as n—oo for x e X.

Proof. We denote the eigenfunction of » belonging to 1e A(x) by
%;. Since & is equicontinuous, it is well known that, if X,(x)=X,(y) (z, y € X)
for every Ae A(r), then we have x=y. Let xeX. We assume that
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lim,_.. exp (2riAt,)=1 for every Ae A(zx). Then we have lim,_. X,(z(z, t,)
=lim,_., exp @riit )X (x)=X,(x). If =(z, t,)—>y as k—oco for some sub-
sequence {t,,} of {t,}, then X,(y")=2,(x) for every A€ A(x). This means, by
the above, that 4’=x. This implies that z(z, t,)—x as n—oo.

Let # and p be flows on X and Y, respectively. A continuous mapping
h of X onto Y is called a homomorphism from = to p if we have h(z(zx, t))
=p(h(x), t) for (x, t) e X XR.

Proposition 2. Let = be a non-trivial almost automorphic minimal flow
on X. Then there exist a non-trivial equicontinuous minimal flow p on Y
and a homomorphism h from. = to p such that A(x)={x e X ; h~'(h(x))={x}}.

Proof. See [3].

Let C(R, R) be the set of real valued continuous functions with com-
pact-open topology. We consider a flow » on C(R, R) defined by 5(f, t)=7,
for (f, t) e C(R, R) X R, where f,(s)=f(t+s) for se R. A function f ¢ C(R,R)
is called an almost automorphic function if it is an almost automorphic
point of 5; that is, for every sequence {t,}CR there exists a subsequence
{t..}={t,} such that f:,,—~g and g-:,,—f as k—co in C(R, R). We denote
the hull of f, {f.}ier» bY 2(f), and the restriction of » to 2(f) by 5,. Let
feCR, R). Fore>0and N>O0, put

Eu={c; | /(t+0)—f®)|<e for [t|<N}.
We say that f is an N-almost periodic function if it satisfies the following
conditions: For ¢>0and N>0

(1) E., is a relatively dense subset of R.

(2) There exists 7(e, N)>0 such that E,y+FE,yCE,y.

Proposition 3. Let feC(R, R). f is an N-almost periodic if and
only if there exists a countable subgroup X, of R such that, if a sequence
{t.}CR satisfies lim,_.., exp (2riit,)=1 for every 2¢ 3, then we have (f,t,)
=fi,—f as n—oo.

Proof. See [2], p. 58.

Proposition 4. If fe C(R, R)is an almost automorphic function, then
f is an N-almost periodic function.

Proof. Since this is stated in [2], p. 63 without the proof. We propose
a proof. By the assumption 7, is an almost automorphic minimal flow on
2(f). Hence, by Proposition 2, there exists an equicontinuous minimal flow
p on Y, and a homomorphism & from 5, to p such that A(y,)={g; h~'(R(9))
={g}}s f. In Proposition 3, put 2',=4(p), and assume that a sequence {¢,}
satisfies lim, .. exp (2nidt,)=1 for each 1e A(p). Then, by Proposition 1,
p(h(f), t)—h(f) as n—co. Since p(h(f), t.)=h(,(f, tN=R(f.), if fin,—9
for some subsequence of {¢,}, then h(f)=h(g) by continuity of 2. Hence
g=17f, because f e A(y,). This means that f, —f as n—o. Hence, by
Proposition 3, f is an N-almost periodic function.

Theorem 1. Let f e C(R, R) be bounded and uniformly continuous on
R. If fis N-almost periodic, then it is an almost automorphic function.

Proof. It is enough to show that, if f, —¢ and ¢g_,—h for some
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sequence {«,}CR, then f=h. Lete>0and N >0 be arbitrary. Since f is
uniformly continuous on R, there exists a 6>>0 such that |f(s)—f(t)|<e for
s, te R with |s—¢|<é. Choose a 7(¢, N)>0so that E,y+E,y,CE,y, and let
1>0 be an inclusion length of E,,. Then we can represent «,=rz,+s, for
each n, where r, € £,y and|s,|<I. We can assume s,—Ss, as n—oo. Choose
a natural number N, so that |s,—s,|<d for n, m=N,. Since g_,,—h in
C(R, R) as n—oo, there exists a natural number n,=>N, such that
19 -0, ) =D |=|9(E — ) —R(D)|<e
for |t|<N. Similarly, since f,,—g in C(R, R) as n—co, there exists a
natural number 7,>N, such that
[fan,(E—n) — 9t —a, ) |=|fE—a,, + ) —9(E—a,,)|<e
for |t{|<N. Then we have
|f(t— atn, 4 an) — R(D)]|
S|t —an,+an) — 9t —a,) |+ 9t —a,,) —h(t) | <2
for |t|<N. On the other hand, we have
[f(t—atp,+an) — F(D)]
=|f(t—tn,+ Ty F (S — 82)) — F(B)]
SIfE— 70+ Tag Sy — 80)) — F(E — 70y + 720 |
Hf =70, 470 — F()|<2¢
for |t{|<N. Hence we obtain
[h(@)—f(®)|
ZIh(E) — F(E—atn, 4 tn) |+ f(E — o, + ) — F(E) [ <de
for [¢{|<N. Since ¢ and N are arbitrary, we conclude that A=/.
Theorem 2. fe C(R, R) is an almost automorphic function if and only
if there exist a non-trivial equicontinuous minimal flow p on Y, a real
valued function @ on Y and y e Y satisfying the following conditions:

1) 9 is continuous on C,(y) with respect to the relative topology on
Y.

@ f®)=P(o(y, 1)) forteR.

@3) fis bounded and uniformly continuous on R.

Proof. Necessity: Since f is an almost automorphic function, it is
bounded and uniformly continuous, and 7, is an almost automorphic mini-
mal flow on 2(f). Hence, by Proposition 2, there exist an equicontinuous
minimal flow p on Y and a homomorphism from 7, to p satisfying A(y,)
={ge2(f); h-'(h(9))={g}}. Define a continuous function H on 2(f) by
H(g)=9(0) for g € 2(f). Then H(f,)=f(t) for te R. We can easily see that
the restriction of & to A(y,) is a homeomorphism from A(y,) to h(A(y,))
with respect to relative topologies. Since n(A(y,)) contains A(f) and it is
an invariant set of p, we have C,(h(f)) Ch(A(y;)). Define a function @ on
Y by

O(y) = {H(h_l(y)) y e h(A(y,)
0 Yy & h(AQ)) .
Then @ is continuous on C,(h(f)) with the relative topology, and f({)=
D(p(h(f), t)) for t e R.
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Sufficiency: It is enough to show that f is an N-almost periodic
function. In Proposition 3, put 3,=4(p). Let a sequence {¢t,}CR satisfy
exp (2nidt,)—1 as n—oo for each 1€ A(p). Then, by Proposition 1, we have
oy, t,)—>y as n—co. Since @ is continuous on C,(y) with respect to the
relative topology, we can easily see that f, —f as n— oo uniformly on every
compact subset of B. This implies, by Proposition 3, that f is an N-almost
periodic function (ef. [2], p. 58).
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