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A Note on Jacobi’s Generating Function for
the Jacobi Polynomials
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(Communicated by K6saku YOSIDA, M. J.A., Sept. 12, 1985)

Some elementary identities in the theory of the Gaussian hypergeo-
metric series are used here to present a simple proof of Jacobi’s generating
function for the Jacobi polynomials.

In the literature there are several interesting proofs of Jacobi’s
generating function for the classical Jacobi polynomials P",)(x)"

( 1 ) P’)(x)t=2+R-’(1-t+R)-(l+t+R)-,
where R= (1-2xt+ t)’/. See, for example, Szeg5 [6, Section 4.4], Rainville
[4, Section 140], Carlitz [2], Askey [1], and Foata and Leroux [3]; see also
Srivastava and Manocha [5, p. 82]. We give here a simple proof which
uses the definition [6, p. 62, Equation (4.21.2)]
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and such elementary results from the theory of the Gaussian hypergeometric
series F, as the transformation [4, p. 60, Equation (4)]
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( 3 ) F, z (1--z)-F,
c; c;

the reduction ormula [4, p. 70, Problem 10]
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and the binomial expansion [4, p. 58, Equation (1)]

5 ) F, a+n--1 z=(l_z)_.
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Denoting the left-hand member of (1) by G(x, t), and using the
definition (2), we readily have

G(x,t)= +/+2k 1 (x-1)t 2F1

a++2k+l, fl;

F, ---1-t

c++k+l
where we have employed the transformation (3).

Upon rewriting this last expression in (6), it is easily observed that

(7) G(x, t)=(1-t)-"--, fl+n-1 t
;0 n 1-t

-(a+fl+n+ 1),

Now apply the reduction formula (4) with

(7) =_1--(o++n+1) and

1--(a+ +n+ 2)

a+fl+n+l;
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and we find from (7) that

(9) G(x, t)=2/R-(1-t+R)--, /+n--1 2t
o n 1--t+R

where R is defined as in (1).
Finally, the generating function (1) follows at once from (9) by ap-

pealing to the elementary identity (5), and our proof is thus completed.
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