5. On the Automorphism Groups of a Compact Bordered Riemann Surface of Genus Five

By Kenji Nakagawa
NTT, Research Laboratories
(Communicated by Kôsaku Yosida, M. J. A., Jan. 13, 1986)

§ 1. Introduction. Let R be a compact bordered Riemann surface of genus g with k boundary components. If $2 g+k-1 \geqq 2$, the automorphism group of R is a finite group. Then we put $N(g, k)$ to be the maximum order of automorphism groups of R where the maximum is taken over all R of genus g with k boundary components. It is well known that $N(g, k)$ is equal to the maximum order of automorphism groups of Riemann surfaces of genus g deleted k points, and that every automorphism group of R is isomorphic to that of a compact Riemann surface (Oikawa [6]). For every $k \geqq 0, N(0, k), N(1, k), N(2, k), N(3, k)$ and $N(4, k)$ are determined by Heins [2], Oikawa [6], Tsuji [7], Tsuji [8] and Kato [4], respectively. In the present paper, we shall determine $N(5, k)$.
§2. Notation. Let S be a compact Riemann surface of genus $g \geqq 2$, G be a conformal automorphism group of S and N be the order of G. Let $S_{0}=S / G$ be the quotient surface with conformal structure induced from S through π, where π is the projection mapping from S onto S_{0}. Let g_{0} be the genus of S_{0}. At $p \in S$ and at $p_{0}=\pi(p) \in S_{0}$, by a suitable choice of local parameters, π is represented locally by $z_{0}=z^{\nu}$, where ν is a positive integer, z and z_{0} are the local parameters at p, p_{0}, respectively. If $\nu>1, p$ is called a branch point of multiplicity ν. If $\pi\left(p_{1}\right)=\pi\left(p_{2}\right)\left(p_{1}, p_{2} \in S\right)$, then multiplicity at p_{1} is equal to that at p_{2}. Therefore we can define the multiplicity over $p_{0} \in S_{0}$ by the multiplicity at $p \in \pi^{-1}\left(p_{0}\right)$. Let t be the number of the points in S_{0} which are the projections of all branch points. We call the set of integers g_{0} and all multiplicities ν_{1}, \cdots, ν_{t} the signature of G and denote it by ($g_{0} ; \nu_{1}, \cdots, \nu_{t}$). Without loss of generality, we may assume $\nu_{1} \leqq \nu_{2} \leqq \cdots$ $\leqq \nu_{t}$. For simplicity, we shall denote $\left(0 ; \nu_{1}, \cdots, \nu_{t}\right)$ by $\left(\nu_{1}, \cdots, \nu_{t}\right)$.

§3. Lemmas.

Lemma 1 (Wiman [9], Nakagawa [5]). If ν is a multiplicity of G ther. $2 \leqq \nu \leqq 4 g+2$.

Lemma 2. There exists neither an automorphism of order 7 nor of order 9 on any compact Riemann surface of genus 5 .

Lemma 3. For all $k \geqq 0, N(5, k) \geqq 8$.
We are going to determine whether the automorphism group with a given signature exists or not on a compact Riemann surface of genus 5 . By Lemma 3, it is not necessary to consider the groups of order $N \leqq 8$. We assume $N>8$. By the Riemann-Hurwitz relation, an easy calculation
shows that $g_{0} \leqq 1, t \leqq 5$. So by Lemma 1 , it is enough to consider a finite number of signatures.
§4. The existence of hyperelliptic surfaces.
Lemma 4. Let $\alpha_{1}, \cdots, \alpha_{2 g+2}$ be distinct complex numbers and f be a linear transformation of the sphere which leaves the set $\left\{\alpha_{1}, \cdots, \alpha_{2 g+2}\right\}$ invariant. Then there are two automorphisms h_{1}, h_{2} on the hyperelliptic Riemann surface defined by

$$
y^{2}=\prod_{n=1}^{2 g+2}\left(x-\alpha_{n}\right)
$$

such that $f \circ x=x \circ h_{j}(j=1,2)$.
Using this lemma, we can show the existence of the following signatures. We shall list up the order N of G, the signature and G_{0} (the group of linear transformations of the sphere that leaves $\left\{\alpha_{n}\right\}$ invariant).

N	signature	G_{0}	N signature	G_{0}
120	$(2,3,10)$	icosahedral group I	$48(2,4,12)$	dihedral group D_{12}
$40(2,4,20)$	dihedral group D_{10}	$24(2,12,12)$	cyclic group Z_{12}	
$24(4,4,6)$	dihedral group D_{6}	$24(2,2,3,3)$	tetrahedral group T	
$22(2,11,22)$	cyclic group Z_{11}	$20(2,20,20)$	cyclic group Z_{10}	
$20(4,4,10)$	dihedral group D_{5}	$12(2,3,4,4)$	dihedral group D_{3}.	

§5. The existence of non-hyperelliptic surfaces. According to Wiman [9], there exist the automorphism groups of order 192, 160, 96 and 64. The signature of the group of order 192 is $(2,3,8)$. Then there are a Fuchsian triangle group Γ with signature $(2,3,8)$ and the normal subgroup K of Γ of index 192 without elliptic elements such that G is isomorphic to Γ / K. Then $\Gamma=\left\langle a, b, c \mid a^{8}=b^{2}=c^{3}=a b c=i d\right\rangle$, and if we denote by \bar{a}, \bar{b} and \bar{c} the K cosets of a, b and c, respectively, then $G=\langle\bar{a}, \bar{b}\rangle$. Thus $\left\langle\bar{a}, \bar{b} \bar{a}^{2} \bar{b}\right\rangle,\left\langle\bar{a}, \bar{b} \bar{a}^{4} \bar{b}\right\rangle$ and $\left\langle\bar{a}, \bar{b} \bar{a} \bar{b} \bar{a}^{4} \bar{b} \bar{a} \bar{b}\right\rangle$ are the automorphism group of orders 64,32 and 16 with signatures $(2,4,8),(2,8,8)$ and $(4,8,8)$, respectively. In the same way, we can show the existence of the groups of orders 96,96 and 80 with signatures $(2,4,6),(3,3,4)$ and $(2,5,5)$. Moreover, the groups of orders 30 and 15 with signatures $(2,6,15)$ and $(3,15,15)$ exist.
§6. The non-existence of signatures. Now there are Fuchsian groups Γ and K such that G is isomorphic to Γ / K. Then F_{K}, the Dirichlet region of K, is a finite union of F_{Γ}. The number of F_{Γ} 's in one F_{K} is equal to N. Since F_{K} is symmetric with respect to the rotation $w \rightarrow \exp (2 \pi i / \nu) w$, there are $N / \nu F_{\Gamma}$'s in the region $0 \leqq \arg w<2 \pi / \nu$. For example, $(3,3,11)$ does not exist. If such a signature existed, the order of corresponding automorphism group would be 33 . Three $(=33 / 11)$ fundamental regions of the Fuchsian group with signature $(3,3,11)$ do not form one eleventh part of the fundamental region of any Fuchsian group, since the angle at a vertex of a fundamental region must be $2 \pi / m$, where m is an integer. In the same way, we find that $(2,5,10),(3,3,11),(3,3,15),(3,5,5)$ and $(5,5,5)$
do not exist. Moreover, the non-existence of $(2,3,12),(2,3,22),(2,5,6)$, $(3,4,12),(5,5,15)$ and $(2,2,4,12)$ is shown.

By summing up above, we obtain
Theorem. $N(5, k)$ is
(1) 192 for $k \equiv 0,24,64,88(\bmod 96)$
(2) 160 for $k \equiv 0,32(\bmod 40)$ except the case (1)
(3) 120 for $k \equiv 0,12,40,52(\bmod 60)$ except the cases (1), (2)
(4) 96 for $k \equiv 16,32,40,48,56,72(\bmod 96)$ except the cases (2), (3)
(5) 80 for $k \equiv 16(\bmod 40)$ except the cases (1), (3), (4)
(6) 64 for $k \equiv 0(\bmod 8)$ except the cases $(1) \sim(5)$
(7) 60 for $k \equiv 20,32(\bmod 60)$ except the cases (1), (2), (4) $\sim(6)$
(8) 48 for $k \equiv 0,4(\bmod 12)$ except the cases $(1) \sim(7)$
(9) 40 for $k \equiv 0,2(\bmod 10)$ except the cases $(1) \sim(8)$
(10) 32 for $k \equiv 4(\bmod 16)$ except the cases $(1) \sim(5),(7) \sim(9)$
(11) 30 for $k \equiv 0,2,5,7(\bmod 15)$ except the cases $(1) \sim(10)$
(12) 24 for $k \equiv 2,6,10,14,20(\bmod 24)$ except the cases $(1) \sim(5)$, (7), (9)~(11)
(13) 22 for $k \equiv 0,1,2,3(\bmod 11)$ except the cases $(1) \sim(12)$
(14) 20 for $k \equiv 1,5,7,11(\bmod 20)$ except the cases $(1) \sim(8)$, (10) ~(13)
(15) 16 for $k \equiv 2,6(\bmod 16)$ except the cases $(1) \sim(5),(7) \sim(9)$, (11) ~(14)
(16) 15 for $k \equiv 1,6(\bmod 15)$ except the cases $(1) \sim(10),(12) \sim(15)$
(17) 12 for $k \equiv 0,1,3,4(\bmod 6)$ except the cases $(1) \sim(5)$, (7), (9) ~(12)
(18) 8 otherwise.

References

[1] Harvey, W. J.: Cyclic groups of automorphisms of a compact Riemann surface. Quart. J. Math. Oxford (2), 17, 86-97 (1966).
[2] Heins, M.: On the number of 1-1 directly conformal maps which a multiplyconnected plane region of finite connectivity $p(>2)$ admits onto itself. Bull. Amer. Math. Soc., 52, 454-457 (1946).
[3] Kato, T.: On the number of automorphisms of a compact bordered Riemann surface. Kōdai Math. Sem. Rep., 24, 224-233 (1972).
[4] ——: On the order of automorphism group of a compact bordered Riemann surface of genus four. Kōdai Math. J., 7, 120-132 (1984).
[5] Nakagawa, K.: On the orders of automorphisms of a closed Riemann surface. Pacific J. Math., 115, no. 2 (1984).
[6] Oikawa, K.: Note on conformal mappings of a Riemann surface onto itself. Kōdai Math. Sem. Rep., 8, 23-30, 115-116 (1956).
[7] Tsuji, R.: On conformal mapping of a hyperelliptic Riemann surface onto itself. ibid., 10, 127-136 (1958).
[8] --: Conformal automorphisms of a compact bordered Riemann surface of genus 3. ibid., 27, 271-290 (1976).
[9] Wiman, A.: Über die algebraischen Curven von den Geschlechten $p=4,5$ und 6 welche eindeutige Transformationen in sich besitzen. Bihang Till. Kongl. Svenska Veienskaps-Academiens Hadlinger, 21, afd 1, no. 3, 41 pp. (1895-96).

