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1. Introduction and results. Let (M, g) be a compact Riemannian
manifold of dim M=d with. or without boundary 3M. We denote by :(M)
the space of solenoidal vector fields on M which vanish near the boundary.
H stands for the completion of the above space with respect to L-norm,
denoted by I" I. V stands for the completion of :,(M) in the Sobolev space
of order s e Z, whose norm is denoted by I1"11,. For 1-forms, we introduce
Alo(M) analogously. The completions of it with corresponding norms are
denoted by/ and , respectively. The space of symmetric tensor fields
with 2 contravariant (or covariant) indices is denoted by ST(M) (or
ST(M).)

Our aim of this paper is to ’solve’ the following Functional Derivative
Equation (F.D.E.)

( I ) Find a functional W(t, ), for e (0, ), e AXe(M) satisfying
W(t, V)

+(A)(x)-W(t’ )--+i(x)f(x, t)W(t, )]dx,(x)

(I.2) -g(x) 3x 3(x)--
W(t, 0)=(I.3)

and
(I.4) w(0, v)= w0().
Here (x)=ri(x)dx e A(M), and f(x, t)--if(x, t)(3/3x) e X(M) for a.e. t,
W0(;) is a given positive definite unctional on As(M) satisfying

(I 5) W0(0)-I and 1_.___{/g( 3W0(;) }_0.Jg(x) x
Hereafter, we use Einstein’s convention or contracting indices and

also the terminology and symbols rom Riemannian geometry and func-
tional analysis. The definition of unctional derivatives

3W(t, ;) and 3W(t,
(x) (x)(y)

is given, for example, in E. Hop [3].
A weak solution of Problem (I) will be afforded by considering the
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ollowing problem.
(II) Find a family of Borel measures {/}0<< on H satisfying

3- u’(x)+ F.(x)u(x)u(x)} (t, u)
u(x)

+,gu(x).g 3(t, u)___ f(x t) 3(t, u)]d xdzt(u)dt
u(x) u(x)

or any test functional (t, u) with compact support in t. The given data
are a measure 0 and a right member f(t).

Our results are
Theorem A. For any initial data o, a Borel measure on H satisfying

(+u)dzo(U)<
H

and any right term f(.) e L(O, -), there exists a solution {Zt}0<< of
(II).

Theorem B. Let Wo(.) be a positive definite functional on H and
satisfy

tracea [-- W0(0)] .
For any right term f(.) e L(O, V-), there exists a strong solution of
Problem (I).

Theorem C. Let M= and l=[d/2]+1. Let Wo(.) be a positive
definite functional on , be of --exponential type and satisfy

trace [--W0(0)] and trace. [--W0(0)].
For any f(.) given in Lo(O, ), there exists a unique classical solution
W(t, ) of Problem (I) on [0, T*) where T* is defined from Wo and f, inde-
pendent of .

Remarks. (1) Technically, we extend the arguments in Foia [1, 2] to
the case where T= and M is an arbitrary compact Riemannian manifold
with or without boundary. Especially, there is no restriction on the di-
mension d of M. In Theorems A and B, actually M is rather arbitrary, but
in Theorem C, we must restrict our attention, to the case where 3M=.
(2) We give the strict meaning to the ’trace’ of the second order unctional
derivatives in Problem (I), that is,

W(x)w(x) 3x’ x
is defined as a distributional element in ST(M), in fairly general situa-
tions. This gives the mathematical meaning to the functional derivatives
of order 2 appeared in (I.1).

Detailed proofs will be given somewhere else.
2. Definitions and the ideas of the proofs.

Definition. A functional defined on [0, T), (T<:) will be called
a classical solution of Problem (I) on (0, T) if there exists a set D, dense
in P, or some s, containing A(M) such that" (1) For each e D, W(t, )
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is absolutely continuous on [0, T). (2) For each i, ],
W(t,
(x)(x)

exists a.e. t on [0, T) as an element of Loo(M) or each ] e D. Moreover,
w(t, )

__ _
3V(x)j(x) 3x 3x

belongs to ST(M). (3) W(t, ) satisfies (I.1)-(I.4) a.e. in t as functions for
each V e D.

Definition. A functional defined on [0, T) H, (T) will be called
a strong solution o Problem (I) on (0, T) if there exists a set D, dense in, or some s, containing J(M) such that" (1) For each V e , W(t, )
belongs to Lo[0, T) and is right continuous in t at t=0.

(2) W(t,)
3(x)(x) 3x x

exists a.e. t on (0, T) as a distributional element in ST(M) for each V e D.
(3) W(t, ) satisfies (I.1)-(I.4) as distributions for each V e D.

Definition. A positive definite unctional W on will be called of -t
exponential type for any e when the function sW(s) defined on R
can be extended analytically to an entire function W(; ) on the complex
plane C satisfying

W(; )[c.eclml.- or all e C, e H,
where c and c are some constants depending on W.

Now, we introduce the notion of test functionals.
Definition. A real functional (.,.) defined on [0, ) Y is called a

test functional if it satisfies the followings" (1) (., .) is continuous on
[0, )XV and verifies ]t(t, u)[c+c,[u[. (2) (., .) is Frchet H-differ-
entiable in the direction Y. (3) Moreover, u(-, ") is continuous from [0, )
X Y to P and is bounded. That is, there exists a constant c depending
on such that u(t, u)c for all (t, u) e [0, ) Y.

We call that a test unctional (., .) has a compact support in t if
there exists a constant T0 depending on such that (t, .)=0 for tTo.

Definition. A family o Borel measures {z(t, .)}0<t< on H is called a
weak solution of Problem (I) on (0, ) if it satisfies (II) for any test func-
tional (., .) with compact support in t.

Using the Galerkin approximation of the Navier-Stokes equation on
(M, g), which appears as a characteristic equation of (I), we may construct
a weak solution of (I), that is, a solution of (II), by modifying the argu-
ments in Foia [1]. Theorem B is essentially given by the Fourier-Stieltjes
transform of the measures obtained in Theorem A, combining with a little
geometrical consideration. In proving Theorem C, we use the higher order
energy inequality (which is local in time) given, for example, in T. Kato
[4] or R. Temam [5].
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