17. On Weak, Strong and Classical Solutions of the Hopf Equation

An Example of F.D.E. of Second Order

By Atsushi INOUE

Department of Mathematics, Tokyo Institute of Technology (Communicated by Kôsaku YOSIDA, M. J. A., Feb. 12, 1986)

§1. Introduction and results. Let (M, g) be a compact Riemannian manifold of dim M = d with or without boundary ∂M . We denote by $\mathring{X}_{\sigma}(M)$ the space of solenoidal vector fields on M which vanish near the boundary. H stands for the completion of the above space with respect to L^2 -norm, denoted by $|\cdot|$. V^s stands for the completion of $\mathring{X}_{\sigma}(M)$ in the Sobolev space of order $s \in \mathbb{Z}$, whose norm is denoted by $\|\cdot\|_s$. For 1-forms, we introduce $\mathring{A}^1_{\sigma}(M)$ analogously. The completions of it with corresponding norms are denoted by \tilde{H} and \tilde{V}^s , respectively. The space of symmetric tensor fields with 2 contravariant (or covariant) indices is denoted by $ST_2(M)$ (or $ST^2(M)$.)

Our aim of this paper is to 'solve' the following Functional Derivative Equation (F.D.E.):

(I) Find a functional
$$W(t, \eta)$$
, for $t \in (0, \infty)$, $\eta \in \mathring{A}_{t}^{i}(M)$ satisfying
(I.1) $-\frac{\partial}{\partial t}W(t, \eta) = \int_{M} \left[-i \left\{ \frac{\partial}{\partial x^{j}} \eta_{i}(x) - \Gamma_{ij}^{i}(x) \eta_{i}(x) \right\} - \frac{\delta^{2}W(t, \eta)}{\delta \eta_{i}(x) \delta \eta_{j}(x)} + \nu(\Delta \eta)_{i}(x) \frac{\delta W(t, \eta)}{\delta \eta_{i}(x)} + i \eta_{j}(x) f^{j}(x, t) W(t, \eta) \right] d_{g} x,$
(I.2) $-\frac{1}{\sqrt{g(x)}} \frac{\partial}{\partial x^{i}} \left\{ \sqrt{g(x)} \frac{\delta W(t, \eta)}{\delta \eta_{i}(x)} \right\} = 0,$

(I.3)
$$W(t, 0) = 1$$

and

(I.4)
$$W(0, \eta) = W_0(\eta).$$

Here $\eta(x) = \eta_j(x) dx^j \in \mathring{A}^1_{\sigma}(M)$, and $f(x, t) = f^j(x, t)(\partial/\partial x^j) \in \mathring{X}_{\sigma}(M)$ for a.e. t, $W_0(\eta)$ is a given positive definite functional on $\mathring{A}^1_{\sigma}(M)$ satisfying

(I.5)
$$W_0(0)=1$$
 and $\frac{1}{\sqrt{g(x)}}\frac{\partial}{\partial x^j}\left\{\sqrt{g(x)}\frac{\partial W_0(\eta)}{\partial \eta_j(x)}\right\}=0.$

Hereafter, we use Einstein's convention for contracting indices and also the terminology and symbols from Riemannian geometry and functional analysis. The definition of functional derivatives

$$rac{\delta W(t,\eta)}{\delta \eta_i(x)} \quad ext{and} \quad rac{\delta^2 W(t,\eta)}{\delta \eta_i(x) \delta \eta_j(y)}$$

is given, for example, in E. Hopf [3].

A weak solution of Problem (I) will be afforded by considering the

following problem.

(II) Find a family of Borel measures $\{\mu_t\}_{0 < t < \infty}$ on *H* satisfying

$$-\int_{0}^{\infty}\int_{H}\frac{\partial \Phi(t,u)}{\partial t}d\mu_{t}(u)dt - \int_{H}\Phi(0,u)d\mu_{0}(u)$$

$$=\int_{0}^{\infty}\int_{H}\int_{M}\left[\left\{u^{j}(x) \ \frac{\partial}{\partial x^{j}}u^{i}(x) + \Gamma^{i}_{jk}(x)u^{j}(x)u^{k}(x)\right\}\frac{\partial\Phi(t,u)}{\partial u^{i}(x)}\right.$$

$$\left. + \nu \nabla_{k}u^{i}(x) \cdot \nabla^{k} \ \frac{\partial\Phi(t,u)}{\partial u^{i}(x)} - f^{j}(x,t) \ \frac{\partial\Phi(t,u)}{\partial u^{j}(x)}\right]d_{g}xd\mu_{t}(u)dt$$

for any test functional $\Phi(t, u)$ with compact support in t. The given data are a measure μ_0 and a right member f(t).

Our results are

Theorem A. For any initial data μ_0 , a Borel measure on **H** satisfying

$$\int_{H} (1 + |u|^2) d\mu_0(u) < \infty$$

and any right term $f(\cdot) \in L^2(0, \infty; V^{-1})$, there exists a solution $\{\mu_i\}_{0 < t < \infty}$ of (II).

Theorem B. Let $W_0(\cdot)$ be a positive definite functional on \tilde{H} and satisfy

trace
$$\tilde{H} \to H$$
 [$-W_{0\eta\eta}(0)$] $< \infty$.

For any right term $f(\cdot) \in L^2(0, \infty; V^{-1})$, there exists a strong solution of Problem (I).

Theorem C. Let $\partial M = \phi$ and $l = \lfloor d/2 \rfloor + 1$. Let $W_0(\cdot)$ be a positive definite functional on \tilde{H} , be of \tilde{V}^{-l} -exponential type and satisfy

 $\operatorname{trace}_{\tilde{H} \to H} [-W_{0\eta\eta}(0)] < \infty \quad and \quad \operatorname{trace}_{\tilde{V}^{l} \to V^{l}} [-W_{0\eta\eta}(0)] < \infty.$

For any $f(\cdot)$ given in $L^{1}_{loc}(0, \infty; V^{\iota})$, there exists a unique classical solution $W(t, \eta)$ of Problem (I) on $[0, T^{*})$ where T^{*} is defined from W_{0} and f, independent of ν .

Remarks. (1) Technically, we extend the arguments in Foiaş [1, 2] to the case where $T = \infty$ and M is an arbitrary compact Riemannian manifold with or without boundary. Especially, there is no restriction on the dimension d of M. In Theorems A and B, actually M is rather arbitrary, but in Theorem C, we must restrict our attention, to the case where $\partial M = \phi$. (2) We give the strict meaning to the 'trace' of the second order functional derivatives in Problem (I), that is,

$$rac{\partial^2 W(t,\eta)}{\partial \eta_i(x) \partial \eta_j(x)} rac{\partial}{\partial x^i} igotimes rac{\partial}{\partial x^j}$$

is defined as a distributional element in $ST_2(M)$, in fairly general situations. This gives the mathematical meaning to the functional derivatives of order 2 appeared in (I.1).

Detailed proofs will be given somewhere else.

§2. Definitions and the ideas of the proofs.

Definition. A functional defined on $[0, T) \times \tilde{H}$, $(T \leq \infty)$ will be called a classical solution of Problem (I) on (0, T) if there exists a set \tilde{D} , dense in \tilde{V}^s , for some *s*, containing $\mathring{A}^{l}_{s}(M)$ such that: (1) For each $\eta \in \tilde{D}$, $W(t, \eta)$ A. INOUE

is absolutely continuous on [0, T). (2) For each i, j,

$$rac{\delta^2 W(t,\,\eta)}{\delta \eta_i(x) \delta \eta_j(x)}$$

exists a.e. t on [0, T) as an element of $L^1_{loc}(M)$ for each $\eta \in \tilde{D}$. Moreover,

$$rac{\delta^2 W(t,\eta)}{\delta \eta_i(x) \delta \eta_j(x)} \, rac{\partial}{\partial x^i} \cdot \bigotimes \! - \! rac{\partial}{\partial x^j}$$

belongs to $ST_2(M)$. (3) $W(t, \eta)$ satisfies (I.1)–(I.4) a.e. in t as functions for each $\eta \in \tilde{D}$.

Definition. A functional defined on $[0, T) \times \tilde{H}$, $(T \leq \infty)$ will be called a strong solution of Problem (I) on (0, T) if there exists a set \tilde{D} , dense in \tilde{V}^s , for some *s*, containing $\mathring{A}^1_s(M)$ such that: (1) For each $\eta \in \tilde{D}$, $W(t, \eta)$ belongs to $L^1_{loc}[0, T)$ and is right continuous in *t* at t=0.

$$(2) \qquad \qquad \frac{\partial^2 W(t,\eta)}{\partial \eta_i(x) \partial \eta_j(x)} \frac{\partial}{\partial x^i} \otimes \frac{\partial}{\partial x^j}$$

exists a.e. t on (0, T) as a distributional element in $ST_2(M)$ for each $\eta \in \tilde{D}$. (3) $W(t, \eta)$ satisfies (I.1)-(I.4) as distributions for each $\eta \in \tilde{D}$.

Definition. A positive definite functional W on \tilde{H} will be called of $\tilde{V}^{-\iota}$ exponential type for any $\eta \in \tilde{H}$ when the function $s \rightarrow W(s\eta)$ defined on R can be extended analytically to an entire function $W(\zeta; \eta)$ on the complex plane C satisfying

 $|W(\zeta;\eta)| \leq c_1 \cdot e^{c_2 |\operatorname{Im}\zeta| \|\eta\| - \iota}$ for all $\zeta \in C, \eta \in \tilde{H}$, where c_1 and c_2 are some constants depending on W.

Now, we introduce the notion of test functionals.

Definition. A real functional $\Phi(\cdot, \cdot)$ defined on $[0, \infty) \times V$ is called a test functional if it satisfies the followings: (1) $\Phi(\cdot, \cdot)$ is continuous on $[0, \infty) \times V$ and verifies $|\Phi_{\iota}(t, u)| \leq c_3 + c_4 |u|$. (2) $\Phi(\cdot, \cdot)$ is Fréchet *H*-differentiable in the direction *V*. (3) Moreover, $\Phi_u(\cdot, \cdot)$ is continuous from $[0, \infty) \times V$ to \tilde{V}^s and is bounded. That is, there exists a constant c_5 depending on Φ such that $\|\Phi_u(t, u)\|_s \leq c_5$ for all $(t, u) \in [0, \infty) \times V$.

We call that a test functional $\Phi(\cdot, \cdot)$ has a compact support in t if there exists a constant T_0 depending on Φ such that $\Phi(t, \cdot)=0$ for $t \ge T_0$.

Definition. A family of Borel measures $\{\mu(t, \cdot)\}_{0 < t < \infty}$ on H is called a weak solution of Problem (I) on $(0, \infty)$ if it satisfies (II) for any test functional $\Phi(\cdot, \cdot)$ with compact support in t.

Using the Galerkin approximation of the Navier-Stokes equation on (M, g), which appears as a characteristic equation of (I), we may construct a weak solution of (I), that is, a solution of (II), by modifying the arguments in Foiaş [1]. Theorem B is essentially given by the Fourier-Stieltjes transform of the measures obtained in Theorem A, combining with a little geometrical consideration. In proving Theorem C, we use the higher order energy inequality (which is local in time) given, for example, in T. Kato [4] or R. Temam [5].

References

- C. Foias: Statistical study of Navier-Stokes equations I. Rend. Sem. Mat. Padova, 48, 219-349 (1973).
- [2] ——: Statistical study of Navier-Stokes equations II. ibid., 49, 9-123 (1973).
- [3] E. Hopf: Statistical hydrodynamics and functional calculus. J. Rat. Mech. Anal., 1, 87-123 (1952).
- [4] T. Kato: Nonstationary flows of viscous and ideal fluids in R³. J. Func. Anal., 9, 296-305 (1972).
- [5] R. Temam: On the Euler equations of incompressible perfect fluids. ibid., 20, 32-43 (1975).