31. On the Crepant Blowing-Ups of Canonical Singularities and Its Application to Degenerations of Surfaces

By Yujiro KAWAMATA Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Kunihiko KODAIRA, M. J. A., March 12, 1986)

Let X be a normal algebraic variety over C, and let D be a Weil divisor on it. We would like to know when the sheaf of graded \mathcal{O}_X -algebras $\Re(D) := \bigoplus_{m\geq 0} \mathcal{O}_X(mD)$ is finitely generated, where the $\mathcal{O}_X(mD)$ are reflexive sheaves of rank 1 corresponding to the mD. It is equivalent to saying that there exists a projective morphism $f: X' \to X$ which is an isomorphism in codimension 1 and such that the strict transform D' of D on X' is Q-Cartier and f-ample. The problem is trivial in case dim X=2; f must be an isomorphism and the condition for the finite generatedness is simply that D is Q-Cartier. It is well known that a normal surface singularity X is (analytically) Q-factorial, i.e., an arbitrary (analytic) Weil divisor on X is Q-Cartier, if and only if X is a rational singularity. In this paper we announce a partial generalization of this fact to 3-dimensional case. (We refer the reader to [3] for definitions concerning minimal models.)

Theorem 1. Let X be a 3-dimensional normal algebraic variety over C which has at most canonical singularities, and let D be a Weil divisor on it. Then $\mathcal{R}(D)$ is finitely generated.

We note that a rational Gorenstein singularity is canonical. The theorem is proved in the following way. Let X be as in Theorem 1 and let $\mu: Y \to X$ be a desingularization. Then we can write $K_Y = \mu^* K_X + \sum_j a_j F_j$ with $a_j \ge 0$ by definition, where the F_j are exceptional divisors of μ . We define e(X) as the number of divisors F_i for which μ is crepant, i.e., $a_i = 0$ (it is easy to see that e(X) does not depend on the choice of μ). For example, e(X) = 0 if and only if X has at most terminal singularities. We define also $\sigma(X) := \dim_{Q} Z_{2}(X)_{Q} / \operatorname{Div}(X)_{Q}$, where $Z_{2}(X)_{Q}$ and $\operatorname{Div}(X)_{Q}$ are groups of Q-divisors and Q-Cartier divisors, respectively (one can prove that $\sigma(X)$ is finite). Thus X is **Q**-factorial if and only if $\sigma(X) = 0$. Our theorem is proved by induction on e(X) and $\sigma(X)$ in the category consisting of varieties X' with projective birational morphisms $f: X' \to X$ which are crepant, i.e., $K_{X'} = f^*K_X$; e.g., an isomorphism in codimension 1 is crepant, since K_x is Q-Cartier. Theorem 1 in case e(X)=0 is proved by using Brieskorn's flips as in [5]. The termination of log-flips in case e(X') = nproduces the existence of the log-flip in case e(X') = n+1 (cf. [3]). In the course of the proof, the concept of the sectional decomposition, which is a rather trivial generalization of the Zariski decomposition for surfaces (cf. [7]), plays an essential role. We employ a technique developed in [2] to deal with the difficulty concerning R-divisors which inevitably appear in higher dimensional sectional decompositions (cf. [1]). More precisely, we prove following Lemmas 2 to 5 in our inductive argument.

Lemma 2. Let X be a 3-dimensional variety with Q-factorial canonical singularities such that $e(X) \ge 1$. Then there exists a projective birational morphism $f: X_1 \to X$ such that (i) X_1 has at most Q-factorial canonical singularities, (ii) the exceptional locus of f is a prime divisor, and (iii) f is crepant.

Lemma 3. There is a function $b: N \times (N \cup \{0\}) \rightarrow N$ such that $b(r, e)Z_{2}(X) \subset \text{Div}(X)$

for an arbitrary 3-dimensional variety X with at most Q-factorial canonical singularities of index r and e = e(X).

Lemma 4. Let $\varphi: X \to Z$ be a projective morphism of 3-dimensional varieties and let D be a Cartier divisor on X. Assume that (a) X has at most Q-factorial canonical singularities, (b) φ is an isomorphism in codimension 1, (c) dim $N^1(X/Z) = 1$, and (d) $(K_X \cdot C) = 0$ and $(D \cdot C) < 0$ for all curves C on X such that $\varphi(C)$ is a point. Then there exists a projective morphism $\varphi^+: X^+ \to Z$ which satisfies the following conditions. (i) X^+ has at most Q-factorial canonical singularities, (ii) φ^+ is an isomorphism in codimension 1, (iii) dim $N^1(X^+/Z) = 1$, and (iv) D^+ being the strict transform of D, $(K_{X^+} \cdot C^+) = 0$ and $(D^+ \cdot C^+) > 0$ for all curves C^+ such that $\varphi^+(C^+)$ is a point.

We call the precedure to obtain φ^+ from φ the *log-flip* with respect to D. Let $f: X \rightarrow S$ be a projective surjective morphism with connected fibers such that dim X=3, X has at most Q-factorial canonical singularities, and that cl $(K_x)=0$ in $N^1(X/S)$. A Weil divisor D on X is called *f*-movable if $f_*\mathcal{O}_x(D) \neq 0$ and if the cokernel of the natural homomorphism $f^*f_*\mathcal{O}_x(D)$ $\rightarrow \mathcal{O}_{X}(D)$ has a support of codimension ≥ 2 . We let $\overline{\operatorname{Apl}}(X/S)$, $\overline{\operatorname{Big}}(X/S)$ and $\overline{Mov}(X/S)$ denote closed convex cones in $N^{1}(X/S)$ generated by the numerical classes of f-ample, f-big and f-movable divisors, and Apl (X/S), Big (X/S) and Mov (X/S) their interiors, respectively. The cone $\overline{\operatorname{Apl}}(X/S)$ \cap Big (X/S) is locally polyhedral in Big (X/S) by Cone Theorem (cf. [3]). A log-flip leaves Mov $(X/S) \cap \text{Big}(X/S)$ stable, while Apl $(X/S) \cap Big(X/S)$ is transformed to a neighboring cone Apl $(X^+/S) \cap \text{Big}(X^+/S)$. The sectional decomposition of an f-big **R**-divisor D relative to f, which always exists as far as X is Q-factorial, is an expression D = M + F in $Z_2(X)_R$ such that $\operatorname{cl}(M) \in \operatorname{Mov}(X/S)$, $F \geq 0$, and that the natural homomorphisms $f_*\mathcal{O}_X([mM]) \rightarrow f_*\mathcal{O}_X([mD])$ are bijective for all $m \in N$.

Lemma 5. Let $f: X \to S$ be a projective surjective morphism of varieties with connected fibers and let M be an \mathbb{R} -divisor on X. Assume the following conditions: (a) dim X=3 and X has at most \mathbb{Q} -factorial canonical singularities of index r and e=e(X), (b) cl $(K_X)=0$ in $N^1(X/S)$, (c) M is f-big and cl $(M) \in \overline{Mov}(X/S)$, and (d) $D := \lceil M \rceil \in 2b(r, e) \cdot Z_2(X)$. Then there does not exist an infinite sequence of log-flips with respect to the strict transforms of D.

The following theorems are immediate applications of Theorem 1.

Theorem 6. Let $f: X \to S$ be a projective surjective morphism with connected fibers and let D be a Weil divisor on X. Assume that dim X=3, X has at most canonical singularities, $cl(K_x)=0$ in $N^1(X/S)$, and that D is f-big. Then the sheaf of graded \mathcal{O}_S -algebras $\mathcal{R}(X/S, D) := \bigoplus_{m \ge 0} f_*\mathcal{O}_X(mD)$ is finitely generated.

Theorem 7. Let X_1 and X_2 be two **Q**-factorial terminal good minimal models of dimension 3 which are birationally equivalent. Then they are joined by a sequence of log-flips.

A singularity of a 3-dimensional normal variety Z is called *flipping* if it comes from a flipping contraction $\varphi: X \rightarrow Z$ from a variety X with terminal singularities (cf. [3]). The existence of minimal models for algebraic 3-folds follows if the existence of the flips is proved, and the latter is equivalent to the finite generatedness of $\Re(K_Z)$ for flipping singularities of dimension 3. Theorem 1 gives a sufficient condition for this to hold; we construct a double covering $\pi: \tilde{Z} \rightarrow Z$ by using a section s of $\mathcal{O}_Z(-2K_Z)$. If \tilde{Z} is a canonical singularity, then the finite generatedness of $\Re(\pi^*K_Z)$ implies that of $\Re(K_Z)$. In this way we obtain the following corollary to Theorem 1.

Corollary 8. Let Z be a flipping singularity of dimension 3 and assume one of the following conditions: (a) there exists a Weil divisor S on Z with $\mathcal{O}_Z(S) \simeq \mathcal{O}_Z(-K_Z)$ which has at most rational singularities, or (b) the double covering of a hyperplane section of Z constructed by using the restriction of a section of $\mathcal{O}_Z(-2K_Z)$ has at most elliptic singularities. Then $\Re(K_Z)$ is finitely generated.

Finally, by using the criteria in Corollary 8, we obtain an alternative proof of the following (slightly generalized) theorem of Tsunoda [6] (Shokurov and Mori also announced to have their proofs in private letters).

Theorem 9. Let $f: X \to S$ be a projective surjective morphism of smooth varieties with connected fibers such that dim X=3 and dim S=1. Assume that singular fibers of f are reduced and simple normal crossing while smooth fibers have non-negative Kodaira dimension. Then there exists a minimal model $f': X' \to S$ of f, i.e., f' is a projective surjective morphism which is birationally equivalent to f, X' has at most Q-factorial terminal singularities, and that $K_{x'}$ is f'-nef. In particular, smooth fibers of f' are minimal models of corresponding fibers of f.

By applying Nakayama's theory [4], we can extend our results to the case where the base space is a complex analytic space; X may be a germ of an analytic space in Theorem 1 and S a disc in Theorem 9.

References

- S. D. Cutkosky: Zariski decomposition of divisors on algebraic varieties (preprint, Brandeis Univ., 1985).
- [2] Y. Kawamata: The Zariski decomposition of log-canonical divisors (preprint).
- [3] Y. Kawamata, K. Matsuda and K. Matsuki: Introduction to the minimal model problem (preprint).
- [4] N. Nakayama: On the lower semi-continuity of plurigenera (preprint).
- [5] M. Reid: Minimal models of canonical 3-folds. Advanced Studies in Pure Math., 1, 131-180 (1983).
- [6] S. Tsunoda: Degeneration of surfaces (preprint).
- [7] O. Zariski: The theorem of Riemann-Roch for high multiples of an effective divisor on an algebraic surface. Ann. of Math., 76, 560-615 (1962).