27. Path Integral for the Weyl Quantized Relativistic Hamiltonian ${ }^{\text {¹ }}$

By Takashi Ichinose*) and Hiroshi Tamura**)
(Communicated by Kôsaku Yosida, m. J. A., March 12, 1986)

1. Introduction. The aim of this note is to give a path integral representation of the solution of the Cauchy problem for
(1.1) $\quad \partial_{t} \psi(t, x)=-\left[H-m c^{2}\right] \psi(t, x), \quad t>0, \quad x \in \boldsymbol{R}^{d}$.

Here c is the light velocity. H is the quantum Hamiltonian via the Weyl correspondence, i.e. the pseudo-differential operator ([1], [2], [6])

$$
\begin{equation*}
(H g)(x)=(2 \pi)^{-d} \iint_{\boldsymbol{R}^{d} \times \boldsymbol{R}^{d}} e^{i(x-y) p} h\left(p, \frac{x+y}{2}\right) g(y) d y d p, \quad g \in \mathcal{S}\left(\boldsymbol{R}^{d}\right) \tag{1.2}
\end{equation*}
$$

associated with the classical Hamiltonian
(1.3) $\quad h(p, x)=\left[(c p-e A(x))^{2}+m^{2} c^{4}\right]^{1 / 2}+e \Phi(x), \quad p \in \boldsymbol{R}^{d}, \quad x \in \boldsymbol{R}^{d}$, of a relativistic spinless particle of mass $m>0$ and charge e interacting with electromagnetic vector and scalar potentials $A(x)$ and $\Phi(x)$ (e.g. [5]). The Planck constant \hbar is taken to equal 1.

The present approach is a rigorous application of the phase space path integral or Hamiltonian path integral method with the "midpoint" prescription ([6], [7]). The path space measure used is a probability measure on the space of the right-continuous paths $X:[0, \infty) \rightarrow \boldsymbol{R}^{d}$ having the lefthand limits. Each path $X(s)$ is called a d-dimensional time homogeneous Lévy process ([3], [4]). The path integral formula obtained has a close analogy with the Feynman-Kac-Itô formula for the quantum Hamiltonian of a nonrelativistic spinless particle of the same mass and charge interacting with vector and scalar potentials (e.g. [8]).
2. Path integral representation. To formulate our result we need some notions from a time homogeneous Lévy process ([3], [4]). The path space measure which we are going to use is the probability measure $\lambda_{0, x}$ on the space $D_{0, x}\left([0, \infty) \rightarrow \boldsymbol{R}^{d}\right)$ of the right-continuous paths having the lefthand limits and satisfying $X(0)=x$ whose characteristic function is given by

$$
\begin{equation*}
\exp \left\{-t\left[\left(c^{2} p^{2}+m^{2} c^{4}\right)^{1 / 2}-m c^{2}\right]\right\}=\int e^{i p(X(t)-X(0))} d \lambda_{0, x}(X) \tag{2.1}
\end{equation*}
$$

The Lévy-Khinchin formula turns out to be

$$
\begin{equation*}
\left(c^{2} p^{2}+m^{2} c^{4}\right)^{1 / 2}-m c^{2}=-\int_{R^{d} \backslash\{0\}}\left[e^{i p y}-1-i p y I_{\{|y|<1\}}(y)\right] n(d y) \tag{2.2}
\end{equation*}
$$

Here $n(d y)$ is the Lévy measure which is a σ-finite measure on $\boldsymbol{R}^{d} \backslash\{0\}$ satis-

[^0]fying $\int_{R^{d} \backslash\{0\}}\left[y^{2} /\left(1+y^{2}\right)\right] n(d y)<\infty$. Notice that for $t>0$, (2.1) is a function of positive type in p.

For each path X in $D_{0, x}\left([0, \infty) \rightarrow \boldsymbol{R}^{d}\right), N_{X}(d s d y)$ is a counting measure on $(0, \infty) \times\left(\boldsymbol{R}^{d} \backslash\{0\}\right)$ for the associated stationary Poisson point process $X(s)-X(s-), s \in \boldsymbol{D}_{X} \equiv\{s>0 ; X(s) \neq X(s-)\}$, on $\boldsymbol{R}^{d} \backslash\{0\}$:

$$
N_{X}\left(\left(t, t^{\prime}\right] \times U\right)=\#\left\{s \in D_{X} ; t<s \leqq t^{\prime}, X(s)-X(s-) \in U\right\},
$$

where $0<t<t^{\prime}$ and U is a Borel set in $\boldsymbol{R}^{d} \backslash\{0\} . \quad \tilde{N}_{X}(d s d y)$ is defined as $\quad \tilde{N}_{X}(d s d y)=N_{X}(d s d y)-\hat{N}(d s d y) \quad$ with $\quad \hat{N}(d s d y) \equiv \int N_{X}(d s d y) d \lambda_{0, x}(X)$ $=d s n(d y) . \quad\left(\operatorname{In}[3], N_{X}, \tilde{N}_{X}\right.$ and \hat{N} are denoted by N_{p}, \tilde{N}_{p} and \hat{N}_{p}.)

Now we assume that A is in $\mathscr{B}\left(\boldsymbol{R}^{d} \rightarrow \boldsymbol{R}^{d}\right)$ and Φ in $\mathcal{B}\left(\boldsymbol{R}^{d} \rightarrow \boldsymbol{R}\right)$. Here $\mathscr{B}\left(\boldsymbol{R}^{d} \rightarrow \boldsymbol{R}^{N}\right), N=1, d$, denotes the vector space of the \boldsymbol{R}^{N}-valued C^{∞} functions in \boldsymbol{R}^{d} which together with their derivatives of all orders are bounded in \boldsymbol{R}^{d}. It is shown that H defines a selfadjoint operator in $L^{2}\left(\boldsymbol{R}^{d}\right)$ with domain $H^{1}\left(\boldsymbol{R}^{d}\right)$ which is bounded from below.

The main result is the following theorem.
Theorem. The solution $\psi(t, x)$ of the Cauchy problem for (1.1) with initial data $\psi(0, x)=g(x)$ in $L^{2}\left(\boldsymbol{R}^{d}\right)$ admits the following path integral representation

$$
\begin{equation*}
\psi(t, x)=\left(e^{-t\left[H-m c^{2}\right]} g\right)(x)=\int e^{-s(t, 0 ; X)} g(X(t)) d \lambda_{0, x}(X) \tag{2.3}
\end{equation*}
$$

with

$$
\begin{align*}
S(t, 0 ; X)= & i \int_{0}^{t+} \int_{|y| \geq 1}(e / c) A(X(s-)+y / 2) \cdot y N_{X}(d s d y) \tag{2.4}\\
& +i \int_{0}^{t+} \int_{0<|y|<1}(e / c) A(X(s-)+y / 2) \cdot y \tilde{N}_{X}(d s d y) \\
& +i \int_{0}^{t} \int_{0<|y|<1}(e / c)[A(X(s)+y / 2)-A(X(s))] \cdot y \hat{N}(d s d y) \\
& +\int_{0}^{t} e \Phi(X(s)) d s .
\end{align*}
$$

3. Sketch of proof. Let $k_{0}(\tau, x)$ be the fundamental solution of the Cauchy problem for the free equation
(3.1) $\quad \partial_{t} \psi(t, x)=-\left[\left(-c^{2} \Delta+m^{2} c^{4}\right)^{1 / 2}-m c^{2}\right] \psi(t, x), \quad t>0, \quad x \in \boldsymbol{R}^{d}$,
to (1.1). Define a bounded linear operator $T(\tau), \tau>0$, by
(3.2) $\quad(T(\tau) g)(x)$

$$
=\int_{R^{d}} k_{0}(\tau, x-y) \exp \left[i(e / c) A\left(\frac{x+y}{2}\right)(x-y)-e \Phi\left(\frac{x+y}{2}\right) \tau\right] g(y) d y
$$

for $g \in L^{2}\left(\boldsymbol{R}^{d}\right)$. Then we have for $g \in L^{2}\left(\boldsymbol{R}^{d}\right)$,

$$
\begin{align*}
\left(T(t / n)^{n} g\right)(x)= & \overbrace{\int_{R^{d}} \cdots \int_{R^{d}}}^{n} k_{0}\left(t / n, x^{(0)}-x^{(1)}\right) \cdots k_{0}\left(t / n, x^{(n-1)}-x^{(n)}\right) \tag{3.3}\\
& \cdot \exp \left[-S_{n}\left(x^{(0)}, \cdots, x^{(n)}\right)\right] g\left(x^{(n)}\right) d x^{(1)} \cdots d x^{(n)},
\end{align*}
$$

where

$$
\begin{align*}
& S_{n}\left(x^{(0)}, \cdots, x^{(n)}\right) \tag{3.4}\\
& \quad=i \sum_{j=1}^{n}(e / c) A\left(\frac{x^{(j-1)}+x^{(j)}}{2}\right)\left(x^{(j)}-x^{(j-1)}\right)+\sum_{j=1}^{n} e \Phi\left(\frac{x^{(j-1)}+x^{(j)}}{2}\right)(t / n)
\end{align*}
$$

with $x^{(0)}=x$. As $n \rightarrow \infty$, the left-hand side of (3.3) converges to $\exp \left[-t\left(H-m c^{2}\right)\right] g$ in L^{2}. The right-hand side of (3.3) is equal to the integral

$$
\begin{equation*}
\int \exp \left[-S_{n}\left(X\left(t_{0}\right), X\left(t_{1}\right), \cdots, X\left(t_{n}\right)\right)\right] g(X(t)) d \lambda_{0, x}(X) \tag{3.5}
\end{equation*}
$$

with respect to the measure $\lambda_{0, x}$ on the space $D_{0, x}\left([0, \infty) \rightarrow \boldsymbol{R}^{d}\right)$ where $t_{j}=j t / n$, and (3.5) approaches the last member of (2.3).

A full account of the present work will be published elsewhere.

References

[1] F. A. Berezin and M. A. Šubin: Symbols of operators and quantization. Coll. Math. Soc. Janos Bolyai, vol. 5, Hilbert Space Operators, Tihany (1970).
[2] A. Grossmann, G. Loupias and E. M. Stein: An algebra of pseudodifferential operators and quantum mechanics in phase space. Ann. Inst. Fourier (Grenoble), 18, 343-368 (1968).
[3] N. Ikeda and S. Watanabe: Stochastic Differential Equations and Diffusion Processes. North-Holland/Kodansha, Amsterdam, Tokyo (1981).
[4] K. Itô: Stochastic Processes. Lecture Notes Series, vol. 16, Aårhus University (1969).
[5] L. D. Landau and E. M. Lifschitz: Course of Theoretical Physics. vol. 2, The Classical Theory of Fields, 4th revised English ed., Pergamon Press, Oxford (1975).
[6] M. M. Mizrahi: The Weyl correspondence and path integrals. J. Math. Phys., 16, 2201-2206 (1975).
[7] -: Phase space path integrals, without limiting procedure. ibid., 19, 298-307 (1978) ; Erratum, ibid., 21, 1965 (1980).
[8] B. Simon: Functional Integration and Quantum Physics. Academic Press, New York (1979).

[^0]: ${ }^{\dagger)}$ Dedicated to Professor Tadashi Kuroda on the occasion of his sixtieth birthday.
 *) Department of Mathematics, Kanazawa University.
 **) Department of Physics, Hokkaido University.

