25. On a Multi-dimensional Inverse Parabolic Problem

By Takashi Suzuki
Department of Mathematics, Faculty of Science, University of Tokyo

(Communicated by Kôsaku Yosida, M. J. A., March 12, 1986)

1. Introduction. Inspired by the Gel'fand-Levitan theory [1], we have studied certain evolutional inverse problems of one space dimension ([3-6]). The purpose of the present article is to extend the related work [2] to a multi-dimensional case. Although our problem is special, our method would apply to more general ones.

For $I=(0,1)$ and $S^{1}=\left\{e^{i 2 \pi \theta} \mid 0 \leqq \theta<1\right\}$, let Ω be $I \times S^{1}$. Then, $\partial \Omega=\gamma_{0} \cup \gamma_{1}$, where $\gamma_{0}=\{0\} \times S^{1}$ and $\gamma_{1}=\{1\} \times S^{1}$. For $p \in C^{\infty}(\bar{\Omega})$ and $F \in C^{\infty}\left(\partial \Omega \times\left[0, T_{1}\right]\right)$, we consider the parabolic equation

$$
\begin{equation*}
\frac{\partial u}{\partial t}=\Delta u-p u \quad\left(z=(x, \theta) \in \Omega, 0 \leqq t \leqq T_{1}\right) \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
\left.\frac{\partial u}{\partial \nu}\right|_{\partial \Omega}=F \quad\left(0 \leqq t \leqq T_{1}\right) \tag{2}
\end{equation*}
$$

and
(3)

$$
\left.u\right|_{t=0}=0 \quad(z \in \Omega) .
$$

Here $\Delta=\left(\partial^{2} / \partial x^{2}\right)+\left(\partial^{2} / \partial \theta^{2}\right)$, ν denotes the outer unit normal vector on $\partial \Omega$ and $T_{1}>0$. The problem we study is to determine p through $F \neq 0$ and $f=\left.u\right|_{\partial \Omega}$ $\left(0 \leqq t \leqq T_{1}\right)$.

Henceforth, $u=u(z, t ; p, F)$ denotes the solution of (1) with (2) and (3). A_{p} is the differential operator $-\Delta+p$ with the Neumann boundary condition $\left.(\partial / \partial \nu)\right|_{\partial \Omega}=0 . \sigma\left(A_{p}\right)=\left\{\lambda_{i}\right\}_{i=0}^{\infty}\left(-\infty<\lambda_{0} \leqq \lambda_{1} \leqq \cdots \rightarrow \infty\right)$ denote its eigenvalues and $\phi_{i}\left(\left\|\phi_{i}\right\|_{L^{2}(\Omega)}=1\right)$ is its eigenfunction corresponding to λ_{i}. For simplicity, each λ_{i} is supposed to be simple : $-\infty<\lambda_{0}<\lambda_{1}<\cdots \rightarrow \infty$. Then we have

Theorem 1. Suppose that for $F=g(t) h(\xi)\left(0 \leqq t \leqq T_{1}, \xi \in \partial \Omega\right)$ satisfying $g \neq 0$ and

$$
\begin{equation*}
\int_{\partial \Omega} h(\xi) \phi_{i}(\xi) d \sigma_{\xi} \neq 0 \quad(i=0,1, \cdots), \tag{4}
\end{equation*}
$$

the relation
(5)

$$
u(\xi, t ; q, F)=u(\xi, t ; p, F) \quad\left(\xi \in \partial \Omega, 0 \leqq t \leqq T_{1}\right)
$$

holds for some coefficient q. Then the equality
(6)

$$
q \equiv p
$$

follows, provided that p and q are real analytic.
2. Outline of the proof of Theorem 1. The solution $u=u(z, t ; p, F)$ of (1) with (2) and (3) is given as

$$
u=u(z, t)=\int_{0}^{t} d \tau \int_{\partial \Omega} d \sigma_{\xi} G(z, \xi ; t-\tau ; p) F(\tau, \xi),
$$

where G is the Green function of $-(\partial / \partial t)+A_{p}: G(z, w ; t ; p)=\sum_{i=0}^{\infty} e^{-t \lambda_{i}}$. $\phi_{i}(z) \phi_{i}(w)$. Since $F(t, \xi)=g(t) h(\xi)$, we have

$$
u(z, t ; p, F)=\int_{0}^{t} r(z, t-\tau) g(\tau) d \tau
$$

where

$$
\begin{equation*}
r(z, t)=\sum_{i=0}^{\infty} e^{-t \lambda_{i}} \phi_{i}(z) \int_{\partial \Omega} \phi_{i}(\xi) h(\xi) d \sigma_{\xi} . \tag{7}
\end{equation*}
$$

Similarly, the relation

$$
u(z, t ; q, F)=\int_{0}^{t} s(z, t-\tau) g(\tau) d \tau
$$

holds with

$$
\begin{equation*}
s(z, t)=\sum_{i=0}^{\infty} e^{-t \mu_{i}} \psi_{i}(z) \int_{\partial \Omega} \psi_{i}(\xi) h(\xi) d \sigma_{\xi}, \tag{8}
\end{equation*}
$$

where $\left\{\mu_{i}\right\}_{i=0}^{\infty}\left(-\infty<\mu_{0} \leqq \mu_{1} \leqq \cdots \rightarrow \infty\right)$ and $\left\{\psi_{i}\right\}_{i=0}^{\infty}\left(\left\|\psi_{i}\right\|_{L^{2}(\Omega)}=1\right)$ denote the eigenvalues and the eigenfunctions of A_{q}, respectively. From the assumption (5), we have

$$
\int_{0}^{t}\{r(\xi, t-\tau)-s(\xi, t-\tau)\} g(\tau) d \tau=0 \quad\left(\xi \in \partial \Omega, 0 \leqq t \leqq T_{1}\right)
$$

hence
(9)

$$
r(\xi, t)=s(\xi, t) \quad\left(\xi \in \partial \Omega, 0 \leqq t \leqq T_{1}\right)
$$

because of $g \neq 0$. By the analyticity in t of r and s, the equality (9) holds for $0 \leqq t<\infty$. We compare the behaviors as $t \rightarrow \infty$ of both sides of (10). By virtue of Weyl's formula, the assumption (4), and the fact $\left.\phi_{i}\right|_{\partial \Omega} \neq 0$, we can show that each μ_{i} is simple, $\lambda_{i}=\mu_{i}$, and

$$
\phi_{i}(\xi) \int_{\partial \Omega} \phi_{i}(\eta) h(\eta) d \sigma_{\eta}=\psi_{i}(\xi) \int_{\partial \Omega} \psi_{i}(\eta) h(\eta) d \sigma_{\eta} \quad(\xi \in \partial \Omega, i=0,1, \cdots) .
$$

The last equalities imply $\phi_{i}(z)=c_{i} \psi(z)(z \in \partial \Omega)$ with $c_{i}^{2}=1$, and Theorem 1 is reduced to the following

Theorem 2. The relation

$$
\begin{equation*}
\lambda_{i}=\mu_{i} \quad \text { and }\left.\quad \phi_{i}\right|_{\partial \Omega}=\left.c_{i} \psi_{i}\right|_{\partial \Omega} \quad(i=0,1,2, \cdots) \tag{10}
\end{equation*}
$$

with $c_{i}^{2}=1$ imply $q \equiv p$, if p and q are real analytic.
3. Outline of the proof of Theorem 2. For sufficiently large $\lambda>0$ and $s>0$.

$$
K_{s}(z, w ; \lambda)=\sum_{i=0}^{\infty}\left\{c_{i} \psi_{i}(z)-\phi_{i}(z)\right\} \phi_{i}(w)\left(\lambda_{i}+\lambda\right)^{-s}
$$

becomes a C^{2}-function of $(z, w) \in \bar{\Omega} \times \bar{\Omega}$. Putting $\square=-\Delta_{z}+\Delta_{w}$ and $c(z, w)$ $=-q(z)+p(w)$, we have

$$
(\square-c(z, w)) K_{s}(z, w ; \lambda)=c(z, z) G_{s}(z, w ; p, \lambda)
$$

from the first relation of (10), where $G_{s}(z, w ; p, \lambda)=\sum_{i=0}^{\infty} \phi_{i}(z) \phi_{i}(w)\left(\lambda_{i}+\lambda\right)^{-s}$ is the Green function of $\left(A_{p}+\lambda\right)^{s}$. On the other hand, the equality

$$
\left.K_{s}\right|_{\Gamma_{1}}=\left.\frac{\partial}{\partial \nu} K_{s}\right|_{\Gamma_{1}}=0
$$

follows from the second equalities of (10), where $\Gamma_{1}=\gamma_{0} \times \partial \Omega \subset \partial(\Omega \times \Omega)$ and ν is the outer unit normal vector on Γ_{1}. Set $D=\{(z, z) \mid z \in \Omega\} \subset \Omega \times \Omega$. Then, $G_{s}(\cdot, \cdot ; p, \lambda)$ is real analytic in $\bar{\Omega} \times \bar{\Omega} \backslash \bar{D}$. Furthermore, Γ_{1} is noncharac-
teristic with respect to \square. Therefore, by Cauchy-Kowalevskaja's theorem and Holmgren's one, $K_{s}(\cdot, \cdot ; \lambda)$ is real analytic in a neighborhood U_{1} of Γ_{1} in $\Omega \times \Omega \backslash \bar{D}$. Actually, U_{1} can contain all points in $\Omega \times \Omega \backslash \bar{D}$ which are reached by deforming a portion of the initial surface γ_{1} analytically through noncharacteristic surfaces with respect to \square having the same boundary. We note that in the $x-y$ plane, there is an analytic family of noncharacteristic curves $\left\{C_{\lambda}\right\}_{0 \leq 1<1}$ with respect to $\left(\partial^{2} / \partial x^{2}\right)-\left(\partial^{2} / \partial y^{2}\right)$ such that $C_{0}=$ $\{x=0, y \in \bar{I}\}, \partial C_{\lambda}=\partial C_{0}=\{(0,0),(1,1)\}$, and $\bigcup_{0 \leqq 1<1} C_{\lambda}=\{(x, y) \mid 0 \leqq x<1 / 2, x<$ $y<1-x\}$. Then, the family $\left\{\tilde{C}_{\lambda}\right\}_{0 \leqq \lambda<1}$ defined by $\tilde{C}_{\lambda}=\left\{(x, \theta, y, \omega) \mid(x, y) \in C_{\lambda}\right.$, $\left.\theta \in S^{1}, \omega \in S^{1}\right\}$ satisfies the condition given above. Consequently, we can take $U_{1}=\left\{(x, \theta, y, \omega) \mid 0 \leqq x<1 / 2, x<y<1-x, \theta \in S^{1}, \omega \in S^{1}\right\}$. Therefore,

$$
\begin{equation*}
K=K(z, w)=\left(-\Delta_{w}+p(w)+\lambda\right)^{s} K_{s}(z, w ; \lambda) \in \mathscr{D}^{\prime}(\Omega \times \Omega) \tag{11}
\end{equation*}
$$

is real analytic in U_{1} and satisfies
(12) $\quad(\square-c(z, w)) K=c(z, z) \delta(z-w)$
in $\Omega \times \Omega$ with $\left.K\right|_{\Gamma_{1}}=\left.(\partial / \partial \nu) K\right|_{r_{1}}=0$. Again by Holmgren's theorem, we obtain $K=0$ in $U_{1} \subset \bar{\Omega} \times \bar{\Omega} \backslash D$. We now recall $c_{i}^{2}=1$ and consider the function

$$
F_{s}(z, w ; \lambda)=\sum_{i=0}^{\infty} \psi_{i}(z)\left\{c_{i} \phi_{i}(w)-\psi_{i}(w)\right\}\left(\lambda_{i}+\lambda\right)^{-s} .
$$

By the same argument for $\Gamma_{2}=\Omega \times \gamma_{0}, F_{s}$ is shown to be real analytic in $U_{2}=\left\{(x, \theta, y, \omega) \mid 0 \leqq y<1 / 2, y<x<1-y, \theta \in S^{1}, \omega \in S^{1}\right\}$, and the distribution $F=F(z, w)=\left(-\Delta_{z}+q(z)+\lambda\right)^{s} F_{s}(z, w ; \lambda)$ becomes zero in U_{2}. However, we can show that $F=K$ by a standard argument. In particular $K=0$ in $U_{1} \cup U_{2}=\left\{(x, \theta, y, \omega) \mid x+y<1 ; 0 \leqq x, y ; \theta, \omega \in S^{1} ; x \neq y\right\}$. We may regard K $=K(z, \cdot)$ as a $w^{*}-C^{2}$ function of z in $\mathscr{D}^{\prime}(\Omega)$. Then, the same argument for γ_{1} implies
(13)

$$
\operatorname{supp} K(z, \cdot) \subset\{y=x\} \cup\{y=1-x\} .
$$

Therefore, we have

$$
K(z, w)=\sum_{l=0}^{m} a_{l}(z, \omega) \otimes \delta^{(l)}(x-y)+\sum_{l=0}^{n} b_{l}(z, \omega) \otimes \delta^{(l)}(1-x-y),
$$

$a_{l}(z, \cdot), b_{l}(z, \cdot) \in \mathscr{D}^{\prime}\left(S^{1}\right)$ being $w^{*}-C^{2}$ in z. Substituting this equality into (12), we get

$$
\begin{equation*}
\frac{\partial}{\partial x} a_{m}(z, \omega)=\frac{\partial}{\partial x} b_{n}(z, \omega)=0 . \tag{14}
\end{equation*}
$$

On the other hand, we obtain

$$
\begin{aligned}
& c_{i} \psi_{i}(z)=\phi_{i}(z)+\sum_{l=0}^{m} \mathscr{D}^{\prime}\left(S^{1}\right)\left\langle a_{l}(z, \cdot), \frac{\partial^{l}}{\partial x^{l}} \phi_{i}(x, \cdot)\right\rangle_{\mathscr{Q}^{\left(S^{1}\right)}} \\
& +\sum_{l=0 \mathscr{D}^{\prime}\left(S^{1}\right)}^{n}\left\langle b_{l}(z, \cdot), \frac{\partial^{l}}{\partial x^{l}} \phi_{i}(1-x, \cdot)\right\rangle_{\mathscr{Q}\left(S_{1}\right)},
\end{aligned}
$$

so that

$$
\begin{align*}
0 & =\left.\left\{\sum_{l=0}^{m}\left\langle a_{l}(z, \cdot), \frac{\partial^{l}}{\partial x^{l}} \phi_{i}(x, \cdot)\right\rangle+\sum_{l=0}^{n}\left\langle b_{l}(z, \cdot), \frac{\partial^{l}}{\partial x^{l}} \phi_{i}(1-x, \cdot)\right\rangle\right\}\right|_{x=0,1} \tag{15}\\
& =\left.\frac{\partial}{\partial x}\left\{\sum_{l=0}^{m}\left\langle a_{l}(z, \cdot), \frac{\partial^{l}}{\partial x^{l}} \phi_{i}(x, \cdot)\right\rangle+\sum_{l=0}^{n}\left\langle b_{l}(z, \cdot), \frac{\partial^{l}}{\partial x^{l}} \phi_{i}(1-x, \cdot)\right\rangle\right\}\right|_{x=0,1}
\end{align*}
$$

for $i=0,1,2, \cdots$, by (10). We can show that the relation (14)-(15) implies
$a_{m}=b_{n}=0$, hence $a_{l}=0(0 \leqq l \leqq m)$ and $b_{l}=0(0 \leqq l \leqq n)$ by an induction. Thus $K \equiv 0$ holds, and $q \equiv p$ follows from (12).

References

[1] Gel'fand, I. M., and Levitan, B. M.: On the determination of a differential equation from its spectral function. A.M.S. Transl., (2) 1, 253-304 (1955) (English translation).
[2] Pierce, A.: Unique identification of eigenvalues and coefficients in a parabolic problem. SIAM J. Control \& Optim., 17, 494-499 (1979).
[3] Suzuki, T.: Remarks on the uniqueness in an inverse problem for the heat equation, I; II. Proc. Japan Acad., 58A, 93-96; 175-177 (1982).
[4] -: On a certain inverse problem for the heat equation on the circle. ibid., 58A, 243-245 (1982).
[5] -: A stability theorem on the boundary identification for coefficients of hyperbolic equations. ibid., 60A, 309-311 (1984).
[6] Suzuki, T., and Murayama, R.: A uniqueness theorem in an identification problem for coefficients of parabolic equations. ibid., 56A, 259-263 (1980).

