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1. Introduction. Let (T, ,,/) be a measure space and assume that
a couple o functions u" T R-R and g T R-R, as well as a vector
(o e R are given. Consider the well-known Aumann-Perles’ variational
problem formulated as ollows

MaxixmiZe ;u(t, x(t))d/

(P) subject to

g(t, x(t))d[(o.
T

The existence of optimal solutions tor (P) has been investigated by Artstein
[2], Aumann-Perles [3], Berliocchi-Lasry [5], Maruyama [8] and others.
In this paper, we shall present an alternative approach to the existence
problem, being based upon the continuity theorem or non-linear integral
unctionals due to Berkovitz [4] and Ioffe [6].

2. Continuity and compactness of level sets for non.linear integral
functionals. In the proo o our main theorem discussed in the next see-
tion, we shall effectively make use of a couple o results in non-linear
unctional analysis. We had better summarize them here or the sake of
readers’ convenience.

Continuity Theorem (Berkovitz [4], Ioffe [6]). Let (T, , p) be a non-
atomic complete finite measure space and f" TRzR- be a convex
normal integrand. Define a non-linear functional J" Lp(T, R) Lq(T, R)
-R(p, q 1) by

J(x, y)= f(t, x(t), y(t))d[.

If there exist some a e Lq’(T, R) (where 1/q /1/q’= 1) and b e L(T, R) such
that

y(t, x, y)>=(a(t), y}+b(t)
((., } stands for the inner product)

for all (t, x, y) e T R R, then J is sequentially lower semi-continuous
with respect to the strong topology on L(T, R) and the weak topology on
Lq(T, R).

Compactness Theorem (Ioffe-Tihomirov [7]). Let (T, , ) be a finite
measure space and f" TR-- be (C(R)(R), ())-measurable, where
.(.) stands for the Borel a-field on (.). If f satisfies the growth condition"
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(where f*(, .) denotes the Yong-Fenchel transform of f" f($, x)for
any fixed e T), hen he se

F={x e L(T, R) f(t, x(t))d/=c}
is weakly relatively compact in L(T, R) for any c e R.

For systematic and extensive studies on these topics, see Maruyama
[9] Chap. 9.

:}. Main Theorem. We shall now turn to the Aumann-Perles’ prob-
lem (P).

Assumption 1. (T, , ) is a non-atomic, complete finite measure
space.

Assumption 2. u satisfies the ollowing conditions.
(1) u is (’(R)_(R), _(R))-measurable.
(2) The unction xu(t, x) is upper semi-continuous and concave for

any fixed t e T.
(3) There exist some a e L(T, R) and b e L(T, R) such that

u(t, x) g(a(t), x}/b(t)
for all (t, x) e T Rt.

(4) .It u(t, x(t)) d/
for all x e L’(T, R).

Assumption 3. g-- (g(’) g ., g satisfies the following conditions.
(1) g() is ((R)_(R), _(R))-measurable.
(2) The function xg()(t, x) is lower semi-continuous and convex for

any fixed t e T.
(3) There exist some c e L(T, R) and d e L’(T, R) such that

g()(t, x)>=<c(t), x}+d(t)
for all (t, x) e T R.

(4) g() satisfies the growth condition"

Dom R

Theorem. Under Assumptions 13, our problem (P) has an optimal
solution in L(T, R).

Proof. According to the Continuity Theorem, Assumptions 12 im-
ply that the integral unctional

J’x >[ u(t, x(t))d[
T

is sequentially upper semi-continuous on L(T, R) with respect to the weak
topology.

And Assumption 3 assures, by the Compactness Theorem, that the set

F= (x e L(T, R)lrg(t, x(t))d/=o}
is weakly relatively compact in L(T, R). Hence F is L-bounded. Thus
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we obtain, by Assumption 2(3), that
--c<y sup J(x) =ll a I .sup x lll + b ]I1-- C < c

.F F

(--cy comes rom Assumption 2(4)).
Let {x} be a sequence in F such that

lim J(x) y.

Since F is weakly relatively compact, {x} has a convergent subsequence.
Without loss of generality, we may assume that

w-lim x x* e L(T, R).

We can easily veriy that x* e F as ollows. Again by the Continuity
Theorem, Assumptions i and 3 imply that the integral unctional

x())d
dT

is sequentially lower semi-continuous on L(T, R) with respect to the weak
topology. Hence

Ir .q()(t, x*(t))dlimn Ir g")(t, x,(t))d(),

rom which we can conclude that x* e F.
Finally, by the sequential upper semi-continuity of J, we must have

J(x*)lim sup J(x)--y.

On the other hand, it is obvious that J(x*). Hence J(x*)=y, which
means that x* is an optimal solution or (P). Q.E.D.

Essentially the same technique can be applied to the existence proof
for the Arkin-Levin’s variational problem ([1]). For the details, see Maru-
yama [9] Chap. 9.
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