62. Proof of Masser's Conjecture on the Algebraic Independence of Values of Liouville Series

By Kumiko Nishioka
Department of Mathematics, Nara Women's University
(Communicated by Shokichi Iyanaga, m. J. A., June 10, 1986)

Let $f(z)=\sum_{k=1}^{\infty} z^{k!}$. Then $f(z)$ converges in $|z|<1$. If α is an algebraic number with $0<|\alpha|<1$, then $f(\alpha)$ is a transcendental number. Masser conjectured that if $\alpha_{1}, \cdots, \alpha_{n}$ are algebraic numbers with $0<\left|\alpha_{i}\right|<1(1 \leqq i$ $\leqq n)$ and no $\alpha_{i} / \alpha_{j}(1 \leqq i<j \leqq n)$ is a root of unity, then $f\left(\alpha_{1}\right), \cdots, f\left(\alpha_{n}\right)$ are algebraically independent. In [2], the author proved the p-adic analogue of the conjecture, and in [3], settled the conjecture for $n=3$ in complex case. In this paper we shall prove the following theorem by using Evertse's Theorem 1 in [1].

Theorem. Suppose $\alpha_{1}, \cdots, \alpha_{n}$ are algebraic numbers with $0<\left|\alpha_{i}\right|<1$ $(1 \leqq i \leqq n)$ and no $\alpha_{i} / \alpha_{j}(1 \leqq i<j \leqq n)$ is a root of unity. Then $f^{(l)}\left(\alpha_{i}\right)(1 \leqq i$ $\leqq n, 0 \leqq l$) are algebraically independent, where $f^{(l)}(z)$ denotes the l-th derivative of $f(z)$.

In what follows, K will denote an algebraic number field including $\alpha_{1}, \cdots, \alpha_{n}$. By a prime on K we mean an equivalence class of non-trivial valuations on K. We denote the set of all primes on K by S_{K} and the set of all infinite primes on K by S_{∞}. For every prime v on K lying above a prime p on \boldsymbol{Q}, we choose a valuation $\|\cdot\|_{v}$ such that

$$
\|\alpha\|_{v}=|\alpha|_{p}^{\left[K_{v}: \boldsymbol{Q}_{p}\right]} \quad \text { for all } \alpha \in \boldsymbol{Q} .
$$

Then we have the product formula :

$$
\prod_{v \in S_{K}}\|\alpha\|_{v}=1 \quad \text { for all } \alpha \in K, \alpha \neq 0
$$

For $X=\left(x_{0}: x_{1}: \cdots: x_{n}\right) \in P^{n}(K)$, put

$$
H_{K}(X)=H(X)=\prod_{v \in S_{K}} \max \left(\left\|x_{0}\right\|_{v},\left\|x_{1}\right\|_{v}, \cdots,\left\|x_{n}\right\|_{v}\right) .
$$

By the product formula, this height is well-defined. Put

$$
h_{K}(\alpha)=h(\alpha)=H(1: \alpha) \quad \text { for } \alpha \in K
$$

Then so-called fundamental inequality holds,

$$
-\log h(\alpha) \leqq \sum_{v \in S} \log \|\alpha\|_{v} \leqq \log h(\alpha) \quad \text { for } \alpha \in K, \alpha \neq 0
$$

where S is any set of primes on K.
Let S be a finite set of primes on K, enclosing S_{∞}, and c, d be constants with $c>0, d \geqq 0$. A projective point $X \in P^{n}(K)$ is called (c, d, S)-admissible if its homogeneous coordinates $x_{0}, x_{1}, \cdots, x_{n}$ can be chosen such that
(i) all x_{k} are S-integers, i.e. $\left\|x_{k}\right\|_{v} \leqq 1$ if $v \notin S$
and
(ii) $\prod_{v \in S} \prod_{k=0}^{n}\left\|x_{k}\right\|_{v} \leqq c \cdot H(X)^{d}$.

The following theorem is due to Evertse [1]: Let c, d be constants with $c>0,0 \leqq d<1$ and let n be a positive integer. Then there are only finitely many (c, d, S)-admissible projective points $X=\left(x_{0}: x_{1}: \cdots: x_{n}\right) \in P^{n}(K)$ satisfying

$$
x_{0}+x_{1}+\cdots+x_{n}=0
$$

but

$$
x_{i_{0}}+x_{i_{1}}+\cdots+x_{i_{s}} \neq 0
$$

for each proper, non-empty subset $\left\{i_{0}, i_{1}, \cdots, i_{s}\right\}$ of $\{0,1, \cdots, n\}$.
Proof of Theorem. We may assume

$$
\left|\alpha_{1}\right|=\cdots=\left|\alpha_{t}\right|>\left|\alpha_{t+1}\right| \geqq \cdots \geqq\left|\alpha_{n}\right| .
$$

We prove the theorem by induction on n. If $n=0$, then the theorem is true. We suppose $n>0$ and $f^{(l)}\left(\alpha_{i}\right)(1 \leqq i \leqq n, 0 \leqq l \leqq L)$ are algebraically dependent. Define $U \in C^{n(L+1)}$ by

$$
U=\left(\alpha_{i}^{l} f^{(l)}\left(\alpha_{i}\right)\right)_{1 \leqq i \leqq n, 0 \leqq l}
$$

Then there is a nonzero polynomial $F \in Z\left[y_{10}, y_{11}, \cdots, y_{n L}\right]$ such that $F(U)$ $=0$. We may assume F has the least total degree among them. By the assumption of induction, for any i, there exists a number $l(0 \leqq l \leqq L)$ such that $\partial F / \partial y_{i l} \neq 0$, and so $\partial F / \partial y_{i l}(U) \neq 0$. Define $U_{m} \in C^{n(L+1)}$ by

$$
U_{m}=\left(\sum_{k=1}^{m-1} k!(k!-1) \cdots(k!-l+1) \alpha_{i}^{k!}\right)_{1 \leqq i \leqq n, 0 \leqq l \leqq L} .
$$

Then $\lim _{m \rightarrow \infty} U_{m}=U$ and

$$
-F\left(U_{m}\right)=F(U)-F\left(U_{m}\right)=\sum_{|J| \geqq 1} J!^{-1} \partial^{|J|} F / \partial y^{J}\left(U_{m}\right)\left(U-U_{m}\right)^{J},
$$

where $J=\left(j_{10}, j_{11}, \cdots, j_{n L}\right)$ with $j_{i l}$ being non negative integers and $|J|, J$, $\partial^{|J|} / \partial y^{J}$ and $\left(U-U_{m}\right)^{J}$ are defined in the usual way. Then

$$
\begin{align*}
-\boldsymbol{F}\left(U_{m}\right)= & \sum_{i=1}^{t} \sum_{l=0}^{L} \partial \boldsymbol{F} / \partial y_{i l}\left(U_{m}\right) m!(m!-1) \cdots(m!-l+1) \alpha_{i}^{m!} \tag{1}\\
& +O\left(m!^{L}\left|\alpha_{t+1}\right|^{m!}\right)+O\left(m!^{2 L}\left|\alpha_{1}\right|^{2 m!}\right) \\
= & O\left(m!^{L}\left|\alpha_{1}\right|^{m!}\right) .
\end{align*}
$$

On the other hand $h\left(F\left(U_{m}\right)\right) \leqq c_{1}^{(m-1)!}$. Hence by the fundamental inequality, we have $F\left(U_{m}\right)=0$ for sufficiently large m. By (1),

$$
\begin{equation*}
\sum_{i=1}^{t} \sum_{l=0}^{L} \partial F / \partial y_{i l}\left(U_{m}\right) m!(m!-1) \cdots(m!-l+1) \alpha_{i}^{m!}=O\left(A^{m!}\right) \tag{2}
\end{equation*}
$$

where $\max \left(\left|\alpha_{1}\right|^{2},\left|\alpha_{t+1}\right|\right)<A<\left|\alpha_{1}\right|$. Put

$$
\beta_{i}(m)=\sum_{l=0}^{L} \partial F / \partial y_{i l}\left(U_{m}\right) m!(m!-1) \cdots(m!-l+1)
$$

Then there is a positive number M such that $\beta_{i}(m) \neq 0(1 \leqq i \leqq t)$ for $m>M$, since there exists $l(0 \leqq l \leqq L)$ such that $\partial F / \partial y_{i l}(U) \neq 0$. We have

$$
\begin{equation*}
\sum_{i=1}^{t} \beta_{i}(m) \alpha_{i}^{m!}=O\left(A^{m!}\right) \tag{3}
\end{equation*}
$$

and
(4)

$$
h\left(\beta_{i}(m)\right) \leqq c_{2}^{(m-1)!} .
$$

If $t=1$, (3) and (4) contradict each other, and the theorem is proved. In what follows, we assume $t>1$.

Proposition 1. Let $\left\{i_{1}, \cdots, i_{s}\right\}$ be any subset of $\{1, \cdots, t\}$ with $s \geqq \mathbf{2}$
and let $m_{1}>m_{2}>M$. If m_{1} is sufficiently large, then

$$
\begin{aligned}
& \left(\beta_{i_{1}}\left(m_{1}\right) \alpha_{i_{1}}^{m_{1}!}: \cdots: \beta_{i_{s}}\left(m_{1}\right) \alpha_{i_{s}}^{m_{1}!}\right) \\
& \quad \neq\left(\beta_{i_{1}}\left(m_{2}\right) \alpha_{i_{1}}^{m_{2}!}: \cdots: \beta_{i_{s}}\left(m_{2}\right) \alpha_{i_{s}}^{m_{s}!}\right) .
\end{aligned}
$$

Proof. Suppose the proposition is not true. Then

$$
\beta_{i_{1}}\left(m_{1}\right) \alpha_{i_{1}}^{m_{1}!} \beta_{i_{2}}\left(m_{2}\right) \alpha_{i_{2}}^{m_{2}!}=\beta_{i_{2}}\left(m_{1}\right) \alpha_{i_{2}}^{m_{1} 1} \beta_{i_{1}}\left(m_{2}\right) \alpha_{i_{1}}^{m_{2}!}
$$

and so

$$
h\left(\alpha_{i_{2}} / \alpha_{i_{1}}\right)^{m_{1}!-m_{2}!} \leqq c_{2}^{4\left(m_{1}-1\right)!}
$$

for infinitely many m_{1}. Since $h\left(\alpha_{i_{2}} / \alpha_{i_{1}}\right)>1$ and $m_{1}!-m_{2}!\geqq\left(m_{1}-1\right)\left(m_{1}-1\right)!$, this is a contradiction.

Proposition 2. Let $\left\{i_{1}, \cdots, i_{s}\right\}$ be any non-empty subset of $\{1, \cdots, t\}$. Then

$$
\sum_{i \in\left\{i_{1}, \cdots, i_{s}\right\}} \beta_{i}(m) \alpha_{i}^{m!} \neq 0
$$

for sufficiently large m.
Proof. Let S be a finite set of primes on K which includes S_{∞} and all divisors of $\alpha_{i}(1 \leqq i \leqq n)$. Then $\beta_{i}(m) \alpha_{i}^{m!}$ are S-integers. We prove the proposition by induction on s. If $s=1$, the proposition is true. We suppose $s \geqq 2$ and

$$
\sum_{i \in\left\{i_{1}, \cdots, \ldots, i_{s}\right\}} \beta_{i}(m) \alpha_{i}^{m!}=0
$$

for infinitely many m. Let ε be any positive number <1. By Evertse's theorem and Proposition 1,

$$
\prod_{v \in S} \prod_{i \in\left\{i_{1}, \cdots, i_{s}\right\}}\left\|\beta_{i}(m) \alpha_{i}^{m!}\right\|_{v}>H\left(\beta_{i_{1}}(m) \alpha_{i_{1}}^{m!}: \cdots: \beta_{i_{s}}(m) \alpha_{i_{s}}^{m!}\right)^{1-\varepsilon}
$$

for infinitely many m. By the fact that $\prod_{v \in S}\left\|\alpha_{i}^{m!}\right\|_{v}=1$ and there exists a prime v such that $\left\|\alpha_{i_{2}} / \alpha_{i_{1}}\right\|_{v}>1$, we have

$$
c_{2}^{s(m-1)!}>\left(\left\|\beta_{i_{2}}(m) / \beta_{i_{1}}(m)\right\|_{v}\left\|\alpha_{i_{2}} / \alpha_{i_{1}}\right\|_{v}^{m!}\right)^{1-\varepsilon} .
$$

This is a contradiction.
Now we complete the proof of the theorem. By the equality (3),

$$
\sum_{i=1}^{t} \beta_{i}(m) \alpha_{i}^{m!}+\delta_{m}=0, \text { where } \delta_{m}=O\left(A^{m!}\right)
$$

Let ε be any positive number <1. We may assume K is not a real field and $|\cdot|^{2}=\|\cdot\|_{v_{0}}$ for some infinite prime v_{0} on K. By Proposition 1, Proposition 2 and Evertse's theorem, we have

$$
\begin{align*}
& \prod_{v \in S} \prod_{i=1}^{t}\left\|\beta_{i}(m) \alpha_{i}^{m!}\right\|_{v} \times \prod_{v \in S}\left\|\boldsymbol{\delta}_{m}\right\|_{v} \tag{5}\\
& \quad>H\left(\beta_{1}(m) \alpha_{1}^{m!}: \cdots: \beta_{t}(m) \alpha_{t}^{m!}: \delta_{m}\right)^{1-\varepsilon}
\end{align*}
$$

if m is sufficiently large. The left hand side of the inequality (5) is not greater than

$$
c_{3}^{(m-1)!}\left(\prod_{\substack{v \in S \\ v \neq v_{0}}} \max \left(\left\|\alpha_{1}\right\|_{v}, \cdots,\left\|\alpha_{t}\right\|_{v}\right)^{m!}\right) A^{2 m!}
$$

The right hand side of the inequality (5) is not less than

$$
c_{4}^{(m-1)!} \prod_{v \in S} \max \left(\left\|\alpha_{1}\right\|_{v}, \cdots,\left\|\alpha_{t}\right\|_{v}\right)^{m!(1-\varepsilon)}
$$

Then we have

$$
c_{\mathrm{5}}^{(m-1)!} A^{2 m!} \geqq\left|\alpha_{1}\right|^{2 m!(1-\varepsilon)} \prod_{\substack{v \in S \\ v \neq v_{0}}} \max \left(\left\|\alpha_{1}\right\|_{v}, \cdots,\left\|\alpha_{t}\right\|_{o}\right)^{-\varepsilon m!}
$$

for sufficiently large m. This contradicts the fact $A<\left|\alpha_{1}\right|$, and the theorem is proved.

References

[1] J.-H. Evertse: On sums of S-units and linear recurrences. Comp. Math., 53, 225-244 (1984).
[2] K. Nishioka: Algebraic independence of certain power series of algebraic numbers (to appear in J. Number Theory).
[3] -: Algebraic independence of three Liouville numbers (to appear in Arch. Math.).

