72. Local Isometric Embedding Problem of Riemannian 3-manifold into R⁶

By Gen NAKAMURA*) and Yoshiaki MAEDA**)

(Communicated by Kôsaku YOSIDA, M. J. A., Sept. 12, 1986)

§1. Introduction. Although the problem of the existence of a local C^{∞} isometric embedding for a Riemannian *n*-manifold (M, g) into Euclidean space $\mathbb{R}^{n(n+1)/2}$ is an old and famous problem, there are only a few results if $n \geq 3$. Recently, Bryant-Griffiths-Yang [1] made a big contribution to the case n=3. In this paper, we generalize their results as follows:

Theorem 1. Let (M, g) be a C^{∞} Riemannian 3-manifold and $p_0 \in M$ be a point such that the curvature tensor $\mathbf{R}(p_0)$ does not vanish. Then there exists a local C^{∞} isometric embedding of a neighborhood U_0 of p_0 into \mathbf{R}^6 .

The result of [1] treats under the additional assumption: (*) $R(p_0)$ does not have signature (0, 1), where the signature of R(p) is defined by considering R(p) as a symmetric linear operator acting on the space of 2-forms.

§2. Linearized PDE for the isometric embedding equation. We shall consider the linearized PDE corresponding to the isometric embedding equation. Take $p_0 \in M$ as the origin and let $U(u^1, u^2, u^3)$ be a coordinate neighborhood around p_0 . Let $(x^4(u))$ be a local C^{∞} embedding of U into \mathbf{R}^6 and consider the following PDE for the unknown functions $(y^4(u))$: (1) $\nabla_i y_j + \nabla_j y_i = 2 \sum_{k=4}^6 y_k H_{ijk}(u) + k_{ij}(u)$ i, j=1, 2, 3, where $(k_{ij}(u))$ is a symmetric 3×3 matrix depending smoothly on u. Here,

choosing a unit normal frame field
$$\{N_{\lambda}(u)\}_{\lambda=4,5,6}$$
 on U, we set

$$y^{A}(u) = \sum_{i=1}^{6} y_{i} \frac{\partial x^{A}}{\partial u^{i}} + \sum_{\lambda=4}^{6} y_{\lambda} \cdot N^{A}_{\lambda},$$

and denote by V and $H_{ij\lambda}(u)$ the covariant derivatives and the second fundamental form in terms of the isometric embedding $(x^{A})_{A=1,...,6}$ and the unit normal frame $\{N_{\lambda}\}$, respectively.

Definition 2. An isometric embedding is called *non-degenerate* if the corresponding second fundamental form $(H_{ij2}(u))$ is linearly independent in the space of all 3×3 symmetric matrices at each point of U.

For a positive integer N, let P be an $N \times N$ system of classical pseudodifferential operator on M with the principal symbol $p(x, \xi)$.

Definition 3. *P* is called a system of (real) principal type at $x_0 \in M$ if, for any $(x_0, \xi_0) \in T^*M - \{0\}$, there exists a conic neighborhood Γ of (x_0, ξ_0) , an $N \times N$ homogeneous classical symbol $\tilde{p}(x, \xi)$, and a (real valued) homo-

^{*)} Department of Mathematics, Faculty of Science, Josai University.

^{**} Department of Mathematics, Faculty of Science and Technology, Keio University.

geneous classical symbol $q(x,\xi)$ such that

(2) $\tilde{p}(x,\xi)p(x,\xi)=q(x,\xi)Id_N$ in Γ , and dq, ξdx are linearly independent on $\Gamma \cap \{(x, \xi); q(x, \xi) = 0\},\$

where Id_N is the $N \times N$ identity matrix.

The following is a basic fact for constructing a local isometric em bedding:

Proposition 3. Under the assumption of Theorem 1, given any $\eta > 0$ and any positive integer s, there exist an open neighborhood U_0 of p_0 , a triplet of non-degenerate 3×3 symmetric matrices ($H_{ijl}(0)$), a triplet of local C^{∞} unit vector fields $(N_{i}(u))_{i=4,5,6}$ on U_{0} , and non-degenerate C^{∞} embedding $(x^{A}(u))_{A=1,\dots,6}$ of U_{0} into \mathbb{R}^{6} such that

(i) $(N_{\lambda}(u))_{\lambda=4,5,6}$ is a unit normal frame field on U_0 of the embedding $(x^{A})_{A=1,...6},$

(ii) $(H_{ij\lambda}(0))$ are the second fundamental form of (x^{A}) at p_{0} with respect to $(N_{\lambda}(u))$,

- (iii) (1) is a 3×3 real principal type on U_0 and (iv) $\left\|g_{ij}(u) \sum_{A=1}^{n(n+1)} \frac{\partial x^A}{\partial u^i} \cdot \frac{\partial x^A}{\partial u^j}\right\|_{H^s(U)} < \eta.$

§3. Local solvability of a non-linear PED of (2). From Proposition 3, one can easily see y_{λ} ($\lambda = 4, 5, 6$) in (1) are determined by an algebraic manipulation if once y_i (i=1, 2, 3) are known. Hence, y_{λ} (λ =4, 5, 6) play an important role in solving the equation of isometric embedding. In this point of view, (1) essentially reduces to 3×3 -system of first order nonlinear PDE

(3)

 $\Phi(u) = g$

with $\mathscr{B}^{\infty}(\mathbf{R}^{3})$ ($\mathscr{B}^{\infty}(\mathbf{R}^{3})$ being the set of C^{∞} functions on \mathbf{R}^{3} with bounded derivatives) coefficients whose linearization at u_0 is a system of real principal type. As for the solvability of (3) we have the following :

Theorem 4. Let $\Phi(u)$ be an $N \times N$ system of non-linear partial differential operator of order m defined on \mathbb{R}^n with $\mathscr{B}^{\circ}(\mathbb{R}^n)$ coefficient. Assume $\Phi(u)$ is Fréchet differentiable in any Sobolev space of order ≥ 0 and denote its derivative by $\Phi'(u)$. Let $x_0 \in \mathbb{R}^n$ and $u_0 \in C^{\infty}(U_0, \mathbb{R}^N)$. Assume that $\Phi'(u_0)$ is an N×N system of real principal type at x_0 . Then, there exists a neighborhood $U_1 \subset U_0$ of x_0 , $s_0 \in Z_+$, and $\eta > 0$ such that the following property holds: For any $g \in C^{\infty}(U_1)$, satisfying

(4) $\|g - \Phi(u_0)\|_{H^{s_0}(U_1)} < \eta,$

there exists $u \in C^{\infty}$ (\mathbb{R}^n , \mathbb{R}^N) such that $\Phi(u) = g$ in U_1 .

§4. The outline of the proof of Theorem 4. As usual our proof is based on the Nash-Moser type implicit function theorem and is proceeded as follows. By checking the argument of Duistermaat-Hörmander [2], we construct an exact local right inverse Q(u) of $\Phi'(u)$ with the properties

(5)
$$\|Q(u)h\|_{s-d} \leq C_s(\|h\|_s + \|h\|_d \|u\|_s)$$

$$(6) \qquad \qquad \Phi'(u)Q(u)h = h \qquad \text{in } U_1,$$

for any real $s \ge d$ and any $h \in H^s(\mathbf{R}^n)$, which are valid if $||u-u_0||_{\alpha} \le \delta$ for

258

259

some large fixed $\alpha > 0$ and sufficiently small δ . Here the constants C_s , d and the open neighborhood U_1 of x_0 are independent of u, and $\|\cdot\|_s$ denotes the norm of the Sobolev space $H^s(\mathbf{R}^n)$. Next, rewrite

- (7) $\Phi(u) = g$ in U_1 in the form:
- $\tilde{\Phi}(u) = \tilde{g} \quad \text{in } U_1$

where $\tilde{\Phi}(u) = \Phi(u+u_0) - \Phi(u_0)$, $\tilde{g} = g - \Phi(u_0)$. To solve (8), define a series of functions $\{u_n\}$ by $u_1 = 0$, $u_{n+1} = u_n + s_{\theta_n} \rho_n$ $(n \ge 1)$, where $\{s_\theta\}_{\theta \ge 1}$ are the smoothing operators for the Banach scale $\{H^s(\mathbf{R}^n)\}$, $\theta_n = \theta^{\tau^{n+n_0}}$ with $\tau = 4/3$ and $\theta > 1$, n_0 taken sufficiently large, $\rho_n = Q(u_n + u_0) \Xi \Lambda g_n$, $g_n = \tilde{g} - \tilde{\Phi}(u_n)$, $\Xi : H^s(U_1)$ $\rightarrow H^s(\mathbf{R}^n)$ is the extension operator and $\Lambda : H^s(\mathbf{R}^n) \rightarrow H^s(U_1)$ is the restriction operator. Then, assuming $\|\tilde{g}\|_{H^{s_0}(U_1)}$ is sufficiently small for some large s_0 , we can prove the following estimates by induction on j:

- $(\mathbf{i})_j \|u_j\|_{\alpha} \leq \delta$
- $(\text{ii})_{j} ||g_{j}||_{H^{d}(U_{1})} \leq M\theta_{j}^{-\mu} ||g_{1}||_{H^{s_{0}}(U_{1})}$
- $(\text{iii})_{j} \| \rho_{j} \|_{\alpha} \leq M \theta_{j}^{-a} \| g_{1} \|_{H^{s_{0}}(U_{1})},$

for some constants M, μ and a independent of j. With these estimates, we can see the limit $u = \lim_{j \to \infty} u_j$ exists in $H^{\alpha}(\mathbb{R}^n)$ and satisfies (8). Moreover, by the usual interpolation argument, we can prove $u \in C^{\infty}(\mathbb{R}^n)$. Details and proofs will be published elsewhere.

Remark. We note that the recent result on the local isometric embedding problem for the case n=2 due to Lin [3] also follows from Theorem 4.

References

- R. Bryant, P. Griffiths and D. Yang: Characteristics and existence of isometric embeddings. Duke Math. J., 50, 893-994 (1983).
- [2] J. Duistermaat and L. Hörmander: Fourier integral operators II. Acta Math., 128, 183-269 (1972).
- [3] C. S. Lin: The local isometric embedding in \mathbb{R}^3 of two dimensional Riemannian manifolds with Gaussian curvature changing sign cleanly. Ph.D. dissertation at the Courant Institute (1983).