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70. Asymptotic Behavior of Solutions for the Equations
of a Viscous Heat-conductive Gas

By Shuichi KAWASHIMA,*) Akitaka MATSUMURA,**)
and Kenji NISHIHARA***)

(Communicated by Kosaku YosipA, M. J. A., Sept. 12, 1986)

1. Introduction. We study the asymptotic behavior of solutions to
the initial value problem for the equations of a viscous heat-conductive gas
in Lagrangian coordinates :

( 1 ) vt'—ux:()y ut+px=(ﬂux/v)x,

(e+u/2),+ (U)o = (k0 /v + putt ;[ V).,
where the unknowns »>0, ¥ and >0 represent the specific volume, the
velocity and the absolute temperature of the gas. The coefficients of
viscosity and heat-conductivity, ¢ and &, are assumed to be positive con-
stants. The pressure p, the internal energy ¢ and the entropy s are smooth
functions of (v, 6). Also, p and e are regarded as smooth functions of (v, s).
We write p=p(, )=9(v, s), e=e(v, §)=é(v, s), s=s(v, §) and assume that
ap(w, 8)/9v <0, de(v, §)/00>0, 8*D(v, s)/0v*>0 and D(v, 8) is a convex function
of (v, s). These conditions together with the thermodynamic relation de
=@ds—pdv ensure that the corresponding inviscid system
(2) v, —u,=0, u+p,=0, (e+u/2),+(pu),=0
is strictly hyperbolic and each characteristic field is either genuinely non-
linear or linearly degenerate ([2]).

We denote the initial function for (1) by Uy(®)= (v, U, 0,)(x) and put
U,=Uy(+). When U_=U,, it was shown in [6] that the solution of (1)
converges to the constant state U_=U, as t—>oco. The case U_xU, was
studied recently in [4], [1], [3] under the hypothesis that U_ is connected
to U, by only shock waves. It was proved that the solution of (1) ap-
proaches the superposition of smooth traveling waves with shock profile.
In this paper, we consider the case where U_ is connected to U, by only
rarefaction waves, and show that the solution of (1) converges to the weak
solution of the Riemann problem for the inviscid equations (2). A similar
result has been obtained in [5] for the barotropic model gas.

2. Theorems. In what follows, we assume that6=|U,—U_|is small
and U_ is connected to U, by only rarefaction waves. We denote by U(t, x)
=(7, U, 6)(t, x) the weak solution to the Riemann problem for (2) with the
step initial data Uy(x)= (B, %, 0)(@)=U,, 2=0 (cf. [2]). Our main result
is stated as follows.
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Theorem 1 (general gas). Assume U,—U,e L* and 3,U,c L* for the
nitial function Uy x). Then there exist positive constants 5, and e, such
that if 6=|U,—U_|<6, and E,=|U,—U,||+8,U,[|<¢, (||| denotes the usual
L*-norm), then the initial value problem for (1) has a unique global solution
U, x)=(v, u, )¢, x) satisfying U—U,e C([0, o0); L?), 3,U € C°([0, o) ; L
and 2(u, 8) € L ([0, o0); L*). Moreover, U(t, x) converges to the weak solu-
tion U(t, x) uniformly in x € R as t—oo.

Next, we consider the special case of an ideal polytropic gas, where p
and e are given explicitly by p=R6/v=Rv-7e7"*/% and e=RE/(r — 1)+ con-
stant. Here R>0 is the gas constant, 7>1 the adiabatic exponent and R
is a positive constant. Letting 7,>>2 be an arbitrarily fixed constant, we
regard 7 as a parameter valued in (1,7,] and assume that for any fixed
positive constants E, and m,, ||(vo— By, Uo— oy (6—0) /T —1)||+1|04(Vey Uoy B0/
VT—=1)||I<E, and inf v,(x), inf §,(x)>m, hold uniformly in 7e (,7,]. Then
we have

Theorem 2 (ideal polytropic gas). Assume the above conditions for
the initial function Uy (x)= v, U, 0,)(x). Then there exist positive constants
6, and 1, € (1, 7,] depending only on E, and m, such that if 6=|U,—U_|<4,,
the initial value problem for (1) has a unique global solution for each
re@,1.], which satisfies the same properties as in Theorem 1.

3. Smooth approximation to the weak solution. To prove the theo-
rems, we employ the technique of [5] and construct a smooth approximating
function for the weak solution U(t, #). The characteristic roots of (2) are
given by A,=—(—5,)"% 2,=0 and A3,=(—75,)"?, where p,=0p(v, s)/ov<0.
The first and the third characteristic fields are genuinely nonlinear while
the second is linearly degenerate. We denote by R,(U) the j-th rarefaction
curve through U, j=1,3. Our assumption for U, implies that there exists
an intermediate state U,, such that U,=R(U_.) and U,=R,U,). There-
fore the weak solution U(t,x) can be decomposed as U(t, x)=U'(t, x)+
U, x)—U,,, where each U’(t, z) is determined by U’(t, x) € R,(U’) and
2(U(t, x))=7!(t, x). Here z/(t, x) is the weak solution of the inviscid
Burgers equation z,+2z,=0 with the step initial data zj(x)=2.=2,(U%),
x2=0. (Here we write U_=U, U,=UL=0%, U,=U0%.)

As in [5], we approximate the step function z{(x) by the smooth func-
tion Z{(x)=(1/2){(z} +2.)+ (2%, —27) tanh z}. Let 2z/(t, x) be the correspond-
ing smooth solution of the inviscid Burgers equation. We construct
Ui, x) by Ui(t, x) e R(U%) and 2(U'(t, ))=%(t, «), and then put U, x)
=U'(t, )+ U, ©)—U,. By the definition, U(¢, ) converges to the weak
solution U(t, «) uniformly in e R as t—oo. We know also that U, x)
=(®, @, H)(t, x) satisfies i,>0 and
(3) 175-?%=0, Ut De=JSs (E+0°)2),+(PW),=0S0,
where p=p(?, §) etc., and f(¢, x) is a rapidly decreasing function of (¢, x)
€ [0, o)X R. Moreover, for pe[l, co], we have the estimates ||0.U ()0
<C3,1=1,2, 0,0 < Ca"" (A +8)~¢» and |30 ()|l < C(1+t)!, where
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0=|U,—U_| and C is a positive constant (cf. [5]).

4. Outline of the proof of theorems. We seek the solution of (1) in
the form U, x)=U(t, x)+ ¥, ) with ¥ e X([0, «)). Here X(I) (I is an
interval in [0, o0)) denotes the set of all functions ¥'(t, x)=(g, ¥, O)(¢, x)
satisfying e C°(I; HY), 8,0 € L*(I; L», 9, (y, %) e L*(I; H") and inf v(t, x),
inf 6(¢, )>0, where inf is taken over IXR and v(t, x)=0(t, )+ ¢(t, x) ete.
Using (38) we rewrite (1) to get the system for ¥ and then consider the
resulting system with the initial condition ¥(c, z)=¥ (x)= (4., V. C)(x) for
each r>0. It is proved by the standard iteration method that if ¥ .e H'
and inf v (), inf ,(x)>0 hold uniformly in >0, then the problem has a
unique solution ¥ € X([z, c+T,)) for a pesitive constant T, independent of
t>0. Here v.(x)=0(z, x)+¢(x) etc. Therefore, to prove our theorems, it
suffices to get desired a priori estimates for the solution U(t, ) of (1)
satisfying ¥=U—U e X([0, T]).

Proposition 3 (general gas). Let U(t, ) be a solution of (1) in the
sense stated above. Assume that T, <E, t [0, T, and v, x), 6(F, x)
>m, (t, ) € [0, TIXR, for positive constants E and m, where ||-|, denotes
the H-norm. Then there are positive constants 6, and C not depending
on T such that if 6=|U,—U_|<3,, then

sup [P+ [ 10.60)F+1.00, OO} d < O+

Proposition 4 (ideal polytropic gas). Let U(Z, x) be a solution of (1) in
the sense stated above. Assume that (¢, VO <E, |COLLE, tel0, T],
and v(t, ©)>m, 0, x)>m, (&, ) € [0, TIXR, for positive constants E, E, m
and m. Then there are positive constants 6,=0, (E, m), C and m, not de-
pending on T and 7 € (A, 7] such that if 6=|U,—U_]<d,, then

Sup (6, 4, ¢/ T= DO+ [ 1080 F+10.00, OO) it

<C(E,+1), inf v(t, ) >m,
for 1 e @, 1), where inf is taken over [0, TIXR. The constants C and m,
do not depend on E and m.
These propositions are proved by the energy method employed in [6].
In particular, we use the energy function E(U, U)y=e—a+p(v—v)—6(s—35)
+(u—1%)?/2, which is reduced to ROH(v/d)+RIH(6/6)/(r — 1)+ (u—1)*/2 for
the case of an ideal polytropic gas, where H(p)=7—1—log». Though we
omit the details of calculations, we remark that in our computations we
have extra terms involving the derivatives LU (¢, x), 1=1,2, or rapidly
decreasing functions of (¢, x) € [0, o) X R, each of which vanishes when the
basic state U(¢, x) is constant (or equivalently, =|U,—U_|=0). These
extra terms are estimated similarly as in [5].
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