70. Asymptotic Behavior of Solutions for the Equations of a Viscous Heat-conductive Gas

By Shuichi Kawashima,*) Akitaka Matsumura,**) and Kenji Nishihara***)

(Communicated by Kôsaku Yosida, M. J. A., Sept. 12, 1986)

1. Introduction. We study the asymptotic behavior of solutions to the initial value problem for the equations of a viscous heat-conductive gas in Lagrangian coordinates:

(1)
$$v_t - u_x = 0, \quad u_t + p_x = (\mu u_x / v)_x, \\ (e + u^2 / 2)_t + (pu)_x = (\kappa \theta_x / v + \mu u u_x / v)_x,$$

where the unknowns v>0, u and $\theta>0$ represent the specific volume, the velocity and the absolute temperature of the gas. The coefficients of viscosity and heat-conductivity, μ and κ , are assumed to be positive constants. The pressure p, the internal energy e and the entropy s are smooth functions of (v,θ) . Also, p and e are regarded as smooth functions of (v,s). We write $p=p(v,\theta)=\hat{p}(v,s)$, $e=e(v,\theta)=\hat{e}(v,s)$, $s=s(v,\theta)$ and assume that $\partial p(v,\theta)/\partial v<0$, $\partial e(v,\theta)/\partial \theta>0$, $\partial^2\hat{p}(v,s)/\partial v^2>0$ and $\hat{p}(v,s)$ is a convex function of (v,s). These conditions together with the thermodynamic relation $de=\theta ds-p dv$ ensure that the corresponding inviscid system

(2) $v_t-u_x=0$, $u_t+p_x=0$, $(e+u^2/2)_t+(pu)_x=0$ is strictly hyperbolic and each characteristic field is either genuinely nonlinear or linearly degenerate ([2]).

We denote the initial function for (1) by $U_0(x) = (v_0, u_0, \theta_0)(x)$ and put $U_{\pm} = U_0(\pm \infty)$. When $U_{-} = U_{+}$, it was shown in [6] that the solution of (1) converges to the constant state $U_{-} = U_{+}$ as $t \to \infty$. The case $U_{-} \neq U_{+}$ was studied recently in [4], [1], [3] under the hypothesis that U_{-} is connected to U_{+} by only shock waves. It was proved that the solution of (1) approaches the superposition of smooth traveling waves with shock profile. In this paper, we consider the case where U_{-} is connected to U_{+} by only rarefaction waves, and show that the solution of (1) converges to the weak solution of the Riemann problem for the inviscid equations (2). A similar result has been obtained in [5] for the barotropic model gas.

2. Theorems. In what follows, we assume that $\delta = |U_+ - U_-|$ is small and U_- is connected to U_+ by only rarefaction waves. We denote by $\overline{U}(t,x) = (\overline{v}, \overline{u}, \overline{\theta})(t,x)$ the weak solution to the Riemann problem for (2) with the step initial data $\overline{U}_0(x) = (\overline{v}_0, \overline{u}_0, \overline{\theta}_0)(x) = U_\pm$, $x \ge 0$ (cf. [2]). Our main result is stated as follows.

^{*)} Department of Mathematics, Nara Women's University.

^{**)} Department of Applied Mathematics and Physics, Kyoto University.

^{***} Tokyo National Technical College, Hachioji, Tokyo.

Theorem 1 (general gas). Assume $U_0 - \overline{U}_0 \in L^2$ and $\partial_x U_0 \in L^2$ for the initial function $U_0(x)$. Then there exist positive constants δ_0 and ε_0 such that if $\delta = |U_+ - U_-| \le \delta_0$ and $E_0 = ||U_0 - \overline{U}_0|| + ||\partial_x U_0|| \le \varepsilon_0$ ($||\cdot||$ denotes the usual L^2 -norm), then the initial value problem for (1) has a unique global solution $U(t, x) = (v, u, \theta)(t, x)$ satisfying $U - \overline{U}_0 \in C^0([0, \infty); L^2)$, $\partial_x U \in C^0([0, \infty); L^2)$ and $\partial_x^2(u, \theta) \in L^2([0, \infty); L^2)$. Moreover, U(t, x) converges to the weak solution $\overline{U}(t, x)$ uniformly in $x \in \mathbb{R}$ as $t \to \infty$.

Next, we consider the special case of an ideal polytropic gas, where p and e are given explicitly by $p=R\theta/v=\hat{R}v^{-\tau}e^{(\tau^{-1})s/R}$ and $e=R\theta/(\tau-1)+\text{constant}$. Here R>0 is the gas constant, $\tau>1$ the adiabatic exponent and \hat{R} is a positive constant. Letting $\tau_0\geq 2$ be an arbitrarily fixed constant, we regard τ as a parameter valued in $(1,\tau_0]$ and assume that for any fixed positive constants E_1 and m_1 , $\|(v_0-\overline{v}_0,u_0-\overline{u}_0,(\theta_0-\overline{\theta}_0)/\sqrt{\tau-1})\|+\|\partial_x(v_0,u_0,\theta_0/\sqrt{\tau-1})\|\leq E_1$ and $\inf v_0(x)$, $\inf \theta_0(x)\geq m_1$ hold uniformly in $\tau\in (1,\tau_0]$. Then we have

Theorem 2 (ideal polytropic gas). Assume the above conditions for the initial function $U_0(x)=(v_0,\,u_0,\,\theta_0)(x)$. Then there exist positive constants δ_1 and $\gamma_1\in(1,\,\gamma_0]$ depending only on E_1 and m_1 such that if $\delta=|U_+-U_-|\leq\delta_1$, the initial value problem for (1) has a unique global solution for each $\gamma\in(1,\,\gamma_1]$, which satisfies the same properties as in Theorem 1.

3. Smooth approximation to the weak solution. To prove the theorems, we employ the technique of [5] and construct a smooth approximating function for the weak solution $\overline{U}(t,x)$. The characteristic roots of (2) are given by $\lambda_1 = -(-\hat{p}_v)^{1/2}$, $\lambda_2 = 0$ and $\lambda_3 = (-\hat{p}_v)^{1/2}$, where $\hat{p}_v = \partial \hat{p}(v,s)/\partial v < 0$. The first and the third characteristic fields are genuinely nonlinear while the second is linearly degenerate. We denote by $R_j(\underline{U})$ the j-th rarefaction curve through $\underline{U}, j = 1, 3$. Our assumption for U_\pm implies that there exists an intermediate state U_m such that $U_m = R_1(U_-)$ and $U_+ = R_3(U_m)$. Therefore the weak solution $\overline{U}(t,x)$ can be decomposed as $\overline{U}(t,x) = \overline{U}^1(t,x) + \overline{U}^3(t,x) - U_m$, where each $\overline{U}^j(t,x)$ is determined by $\overline{U}^j(t,x) \in R_j(U_-^j)$ and $\lambda_j(\overline{U}^j(t,x)) = \overline{z}^j(t,x)$. Here $\overline{z}^j(t,x)$ is the weak solution of the inviscid Burgers equation $z_t + zz_x = 0$ with the step initial data $\overline{z}_j^0(x) = z_\pm^j \equiv \lambda_j(U_\pm^j), x \ge 0$. (Here we write $U_- = U_-^1$, $U_m = U_+^1 = U_-^3$, $U_+ = U_+^3$.)

As in [5], we approximate the step function $\bar{z}_0^j(x)$ by the smooth function $\tilde{z}_0^j(x) = (1/2)\{(z_+^j + z_-^j) + (z_+^j - z_-^j) \tanh x\}$. Let $\tilde{z}^j(t,x)$ be the corresponding smooth solution of the inviscid Burgers equation. We construct $\tilde{U}^j(t,x)$ by $\tilde{U}^j(t,x) \in R_j(U_-^j)$ and $\lambda_j(\tilde{U}^j(t,x)) = \tilde{z}^j(t,x)$, and then put $\tilde{U}(t,x) = \tilde{U}^1(t,x) + \tilde{U}^3(t,x) - U_m$. By the definition, $\tilde{U}(t,x)$ converges to the weak solution $\bar{U}(t,x)$ uniformly in $x \in \mathbf{R}$ as $t \to \infty$. We know also that $\tilde{U}(t,x) = (\tilde{v},\tilde{u},\tilde{\theta})(t,x)$ satisfies $\tilde{u}_x \geq 0$ and

(3) $\tilde{v}_t - \tilde{u}_x = 0$, $\tilde{u}_t + \tilde{p}_x = f_x$, $(\tilde{e} + \tilde{u}^2/2)_t + (\tilde{p}\tilde{u})_x = \tilde{u}f_x$, where $\tilde{p} = p(\tilde{v}, \tilde{\theta})$ etc., and f(t, x) is a rapidly decreasing function of (t, x) $\in [0, \infty) \times R$. Moreover, for $p \in [1, \infty]$, we have the estimates $\|\partial_x^t \tilde{U}(t)\|_{L^p} \le C\delta$, l = 1, 2, $\|\partial_x \tilde{U}(t)\|_{L^p} \le C\delta^{1/p} (1+t)^{-(1-1/p)}$ and $\|\partial_x^2 \tilde{U}(t)\|_{L^p} \le C(1+t)^{-1}$, where

 $\delta = |U_+ - U_-|$ and C is a positive constant (cf. [5]).

4. Outline of the proof of theorems. We seek the solution of (1) in the form $U(t,x)=\tilde{U}(t,x)+\Psi(t,x)$ with $\Psi\in X([0,\infty))$. Here X(I) (I is an interval in $[0,\infty)$) denotes the set of all functions $\Psi(t,x)=(\phi,\psi,\zeta)(t,x)$ satisfying $\Psi\in C^0(I;H^1)$, $\partial_x\phi\in L^2(I;L^2)$, $\partial_x(\psi,\zeta)\in L^2(I;H^1)$ and inf v(t,x), inf $\theta(t,x)>0$, where inf is taken over $I\times R$ and $v(t,x)=\tilde{v}(t,x)+\phi(t,x)$ etc. Using (3) we rewrite (1) to get the system for Ψ and then consider the resulting system with the initial condition $\Psi(\tau,x)=\Psi_{\tau}(x)=(\phi_{\tau},\psi_{\tau},\zeta_{\tau})(x)$ for each $\tau\geq 0$. It is proved by the standard iteration method that if $\Psi_{\tau}\in H^1$ and inf $v_{\tau}(x)$, inf $\theta_{\tau}(x)>0$ hold uniformly in $\tau\geq 0$, then the problem has a unique solution $\Psi\in X([\tau,\tau+T_0])$ for a positive constant T_0 independent of $\tau\geq 0$. Here $v_{\tau}(x)=\tilde{v}(\tau,x)+\phi_{\tau}(x)$ etc. Therefore, to prove our theorems, it suffices to get desired a priori estimates for the solution U(t,x) of (1) satisfying $\Psi=U-\tilde{U}\in X([0,T])$.

Proposition 3 (general gas). Let U(t,x) be a solution of (1) in the sense stated above. Assume that $\|\Psi(t)\|_1 \leq \underline{E}$, $t \in [0,T]$, and v(t,x), $\theta(t,x) \geq \underline{m}$, $(t,x) \in [0,T] \times \mathbf{R}$, for positive constants \underline{E} and \underline{m} , where $\|\cdot\|_1$ denotes the H^1 -norm. Then there are positive constants δ_2 and C not depending on T such that if $\delta = |U_+ - U_-| \leq \delta_2$, then

$$\sup_{0 \le t \le T} \|\varPsi(t)\|_1^2 + \int_0^T \|\partial_x \phi(t)\|^2 + \|\partial_x (\psi, \zeta)(t)\|_1^2 \, dt \le C (E_0 + \delta^{1/5})^2.$$

Proposition 4 (ideal polytropic gas). Let U(t,x) be a solution of (1) in the sense stated above. Assume that $\|(\phi,\psi)(t)\|_1 \leq E$, $\|\zeta(t)\|_1 \leq \underline{E}$, $t \in [0,T]$, and $v(t,x) \geq m$, $\theta(t,x) \geq \underline{m}$, $(t,x) \in [0,T] \times R$, for positive constants E, \underline{E} , m and \underline{m} . Then there are positive constants $\delta_3 = \delta_3$ (E,m), C and m_2 not depending on T and $T \in (1,T_0]$ such that if $\delta = |U_+ - U_-| \leq \delta_3$, then

$$\sup_{0 \le t \le T} \| (\phi, \psi, \zeta / \sqrt{7 - 1})(t) \|_1^2 + \int_0^T \| \partial_x \phi(t) \|^2 + \| \partial_x (\psi, \zeta)(t) \|_1^2 dt \\ \le C(E_1 + 1)^2, \qquad \inf v(t, x) \ge m_2$$

for $\gamma \in (1, \gamma_0]$, where inf is taken over $[0, T] \times R$. The constants C and m_z do not depend on E and m.

These propositions are proved by the energy method employed in [6]. In particular, we use the energy function $E(U,\,\tilde{U})\!=\!e\!-\!\tilde{e}\!+\!\tilde{p}(v\!-\!\tilde{v})\!-\!\tilde{\theta}(s\!-\!\tilde{s})\!+\!(u\!-\!\tilde{u})^2/2$, which is reduced to $R\tilde{\theta}H(v/\tilde{v})\!+\!R\tilde{\theta}H(\theta/\tilde{\theta})/(7\!-\!1)\!+\!(u\!-\!\tilde{u})^2/2$ for the case of an ideal polytropic gas, where $H(\eta)\!=\!\eta\!-\!1\!-\!\log\eta$. Though we omit the details of calculations, we remark that in our computations we have extra terms involving the derivatives $\partial_x^l \tilde{U}(t,x)$, $l\!=\!1,2$, or rapidly decreasing functions of $(t,x)\in[0,\infty)\!\times\! R$, each of which vanishes when the basic state $\tilde{U}(t,x)$ is constant (or equivalently, $\delta\!=\!|U_+\!-\!U_-|\!=\!0$). These extra terms are estimated similarly as in [5].

References

- S. Kawashima and A. Matsumura: Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion. Commun. Math. Phys., 101, 97-127 (1985).
- [2] P. D. Lax: Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math., 10, 537-566 (1957).
- [3] T.-P. Liu: Shock waves for compressible Navier-Stokes equations are stable (preprint).
- [4] A. Matsumura and K. Nishihara: On the stability of traveling wave solutions of a one-dimensional model system for compressible viscous gas. Japan J. Appl. Math., 2, 17-25 (1985).
- [5] —: Asymptotics towards the rarefaction waves of the solutions of a onedimensional model system for compressible viscous gas. ibid., 3, 1-13 (1986).
- [6] M. Okada and S. Kawashima: On the equations of one-dimensional motion of compressible viscous fluids. J. Math. Kyoto Univ., 23, 55-71 (1983).