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String theories (cf. Green-Gross [5]) seem to suggest much to prime
number theories. We supplement the previous report [7] from the view
point of string theories. In 1 we notice an application of string theories,
and we remark the "multiple string case" in 2. The contents of this
report were presented in a symposium entitled "Superstring Theories" at
the University of Tokyo in September 1986. Some details will appear
elsewhere.

1. An application of string theories. Let M be a compact Riemann
surface of genus 2, r the period matrix belonging to the Siegel upper half
space of genus 2, and Z,(s) the original Selberg zeta function. Let X0 be
the Siegel cusp form of genus 2 and weight 10 uniquely determined up to
constant" 0-c ]-[:o9. Then"

Theorem 1. Z’(1)13Z(2)-l--C ]Z0(r)l (det Im r)1 up to an absolute
constant C independent of M.

This follows from the recent progress of string theories. First,
D’Hoker-Phong [4] (cf. [1])showed that:

Z’(1)Z(2)-=C(det z/)(det z//) -,
where z/ is the usual Laplacian on M and z1/2 is a Laplacian acting on
certain tensors. Secondly, Belavin-Knizhnik [3] (cf. [2], [6], [10]) showed
that:

]Z0(r) (det Im r)=C(det z)(det z//)-.
These two results are proved by quite different methods, and Theorem 1
seems to be astonishing.

We notice another suggestion from:string theories, which is conjec-
rurally schematized as follows:
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The left tree indicates the unification of the four forces: weak, electro-
magnetic, strong, and gravitational. The right tree indicates the unifica-
tion of the four zeta functions" Artin, Hecke-Langlands, Hasse-Weil, and
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Selberg. We omit the detailed comparison except or emphasizing two
points" (1) Selberg zeta unctions treat closed strings (real one dimen-
sional loops) as "primes" in contrast with other three zeta unctions where
"primes" are zero dimensional closed points, and (2) gauge groups cor-
respond to (extended) Galois groups. For a background we refer to [9].

2. A multiple zeta function. Let X’Rr-+Aut (M) be a group homo-
morphism given by tXt from the additive group of r-copies of real num-
bers to the automorphism group of a set M. Such an X is called an
abstract dynamical system. (It is usual to suppose suitable topological or
analytical conditions on X.) We define the zeta function g(s, X) of X as
follows. We say that an orbit p=Rr.m for an m e M is "periodic" if the
isotropy subgroup (stabilizer) R;=R is isomorphic to Zr, where Z denotes
the additive group of integers. We denote by Per (X) the set of all periodic
orbits, and for each p e Per (X) we define N(p)=exp (vol (R/R;)) where vol
denotes the volume. Then we put

(s,X)= (1--N(p)-s) -1

pPer(X)

where s is a variable complex number. This definition was noted in
[7, Remark 1]. When r-l, this zeta unction coincides with the zeta
unction o Selberg-Smale-Ruelle, and there are vast results in this case.
On the contrary, it seems that there is no paper treating zeta unctions
or r2. We investigate the latter case in a particularly simple "com-
pletely reducible" situation. (On the level o zeta functions ot analytic
rings of [7], "reducible" means nothing but "decomposable into a tensor
product".)

We say that an abstract dynamical system X" Rr--Aut (M) is completely
reducible it there are dynamical systems X’R--Aut(Mi) or i--l,--., r
such that M--M M and Zt(ml, ., mr)--(Z(m,), ., X(m)) for
(m m)eMandt (t, ,t)eR. We call X the product of X
X. In this case Per (X) is identified with Per (X) Per (Xr) ("mul-
tiple prime strings") and we have N(p)=exp(logN(pl)...logN(p)) for
P=(Pl,’", Pr)e Per (X). Thus the study of (s, X) is reformulated as fol-
lows. Let P, ..., P be prime sets in the sense of [8] with norm functions

N P-R. Define N" PI P-R by N(p, ., p)---exp (log N(p,).
logNr(p)) for p e P. Then PI’" Pr is a prime set again, and our
object is the study of the multiple Euler product

(s,Px...xP)= ]-I (1--N(pl,...,p)-)-,
(Pl, ",Pr)

which may be called a multiple zeta function. (We notice that there exist
various "multiple zeta functions" also.) We make a trivial remark that
every prime set P is obtainable from an abstract dynamical system X’R
-Aut (M) via P= Per (X) so (s, P)--(s, X) for example, it is sufficient to
take M--P (R/Z) and put

Xt(p, x)-(p, x+t/log N(p) rood 1).
For simplicity we note the following two cases.
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Theorem 2. Let M1 and M2 be compact Riemann surfaces of genus
greater than 1. Let X" R-+Aut (M) be the geodesic action, and X"
Aut (M1 M2) be the product dynamical system. Then (s, X)--(s, Per (X1)
Per (X))is meromorphic in Re (s))0 with the natural boundary Re (s)
---0.

Theorem 3. Let P(Z) be the prime set of rational primes. Then
(s, P(Z) P(Z)) is meromorphic in Re (s)0 with the natural boundary
Re (s) -0.

The method of the proof of Theorems 2 and 3 is a simple modification
of [8].

Looking the "largest" pole of (s, X), we have an asymptotic distribu-
tion of multiple primes (p, .-., p). For example (s, P(Z)P(Z)) is non-
zero holomorphic in Re (s)>=l/log 2 except for the double pole at s--1/log 2,
so we have

{(p, p2); p e P(Z), Y(p, p)<= t} -2 log 2 t/2
logt

as t-+c. Similarly, let M be a compact Riemann surface of genus greater
than I with the geodesic action X" R-+Aut (M), then 5(s, Per (X) Per (X))
is non-zero holomorphic in Re(s)>l/l(M) except for the double pole at
s=l/l(i),

/(M)=min (log N(p) p e Per (X)}
being the minimal length of a closed geodesic on M, and we have

tllt(M)
{(Pl, P) P e Per (X), N(pl, p)= t} 2. l(M)-- as t-- c.

logt
Remark. For various applications analytic dynamical systems X’R

--Aut (M) are important. We obtain a natural analytic dynamical system
of the above orm or M=F\G/K where G is a Lie group of rank r, K is
a maximal compact subgroup of G, and F is a co-compact discrete subgroup
of G. For example, the situation of Theorem 2 is obtained from G=
SL (2, R) SL (2, R). More generally we must study quantum dynamical
systems as in [7].
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