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Boundedness of Closed Linear Operator T
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1o Let T be a densely defined closed linear operator in a Banach space
E satisfying that R(T)cD(T). We prove that if T satisfies one of the
following conditions"

(1) llTxllllxll>=llTxll for every x e D(T), or
(2) T has the non-empty resolvent set,

then it follows that T is bounded.
Let T" E-H be a densely defined closed linear operator and T*" H-E’

be the adjoint operator, where H is a Hilbert space. It is shown that if
R(T)cD(T*), then T is bounded.

2. Let E be a Banach space and T" E--E be a densely defined closed
linear operator with the domain D(T) nd the range R(T). The following
problem was posed by Ota [3].

Problem. Suppose that R(T)cD(T), then is T bounded?
In general, the answer is negative as shown by Ota [3]. Ota [3] proved

that if T is dissipative, then the answer is positive. In this note we investi-
gate other conditions which imply the positive answers for this problem.

After Furuta [1], we say the linear operator T" E--.E paranormal if
R(T)D(T) and if it holds that IITxl[llxll>=llTxll or every x e D(T).

Theorem 1. Let T be a densely defined closed paranormal operator
in a Banach space E. Then T is bounded.

Proof. Since T is closed, (D(T), It) is a Banach space, where xir
---llxll+lITxll, x e D(T). By R(T)cD(T), the operator T2" (D(T), [r)-E is
well defined. By the closedness of T, it follows that T is also closed on
(D(T), It), hence bounded. Thus there exists C0 such that Txl[C(llxll
+llTxll) for every x e D(T). By the paranormality, we have for every
xeD(T) with Ilxll=l, I]Tx]IIITx]IC(I+IITxlI). That is, IITxlI2--CIITxll
C0. This implies that

IITxll<= C+/C+4C < +oo,
2

which implies the assertion.
Let T be a linear operator in a Banach space E. The resolvent se$

p(T) of T is the set of all complex numbers such that the range R(I--T)
is dense in E and that 2I-T has the continuous inverse (,I--T)-’ on
D((,I--T)-)=R(2I--T), see Yosida [4], Ch. VIII. It is well known that if
T is bounded, then p(T):/::. The converse is valid for a densely defined
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closed linear operator satisfying R(T)cD(T).
Theorem 2. Let T be a densely defined closed linear operator in a

Banach space E satisfying that R(T)cD(T). Suppose that p(T)=/=, then
T is bounded.

Proof. Take 2 e p(T). Since 2I--T has the continuous inverse, there
exists C0 such that II(2I--T)xll>_Cllxll for every x e D(2I-- T) D(T). By
the closedness of T, it follows that the range R(I--T) is closed. In fact,
let (2I--T)xn-Z, x D(T) and z e E. Then by this inequality, (xn} is a
Cauchy sequence in E, hence xn--x for some x e E. Thus we have Xn--X
and Tx-2x--z. By the closedness of T, we have x e D(T) and Tx =2x--z,
which shows the assertion. Since 2 e p(T), R(]I--T) is dense in E, so
R(2I--T)=E. Consequently it follows that E=R(I--T)D(T), that is,
D(T)--E. Thus T is bounded.

Theorem :. Let T be a densely defined closed linear operator in a
Banach space E satisfying that R(T)cD(T). Suppose that there exists
NO such that for every nN, there exists KO such that
Kn x ll, x e D(T). Then T is bounded.

Proof. We shall show that D(T)=E. By R(T)cD(T), the operator
T" (D(T), Ir)-+(D(T), I) is well defined and bounded as easily seen,
=1 xlI+llTx]l or xe D(T). There exists C0 such that ITxlr<_Clxlr for
every x e D(T). Let n be nN and nC. Then it follows that nI--T has
the bounded inverse (nI-T)- which is everywhere defined on (D(T), It).
Thus we have D((nI--T)-)=R(nI--T)=D(T). Since
x e D(T), by the manner same to Theorem 2, we can see that the range
R(nI--T) is closed. Consequently it follows that E=D(T)--R(nI--T)
=D(T), which proves the assertion.

:. Let H be a Hilbert space. Ota [3] proved that if T is a densely
defined closed linear operator in H satisfying that R(T)D(T*), then T is
bounded. We shall prove an analogous result for an operator T" E--H,
where E is a Banach space and H is a Hilbert space.

Let T" E--H be a densely defined linear operator. The ad]oint T* of
T is defined by D(T*)= (y e H; D(T) x-(Tx, y) is continuous} and (T*y)(x)
=(Tx, y) for x e D(T) and y e D(T*). The adjoint T* is an operator in H
into E’.

Theorem 4. Let E be a Banach space, H be a Hilbert space and T"
E--.H be a densely defined closed linear operator. If R(T)D(T*), then
T is bounded.

Proof. Since T is closed, (D(T), I) is a Banach space, where
=]IXlIE+IITXlIH. By R(T)cD(T*), the operator T’T" (D(T),I Ir)--E’ is
well defined. Remarking that T* is closed since D(T) is dense, we can see
that T*T is also closed on (D(T), It), hence bounded. There exists C>0
such that ]lT*Txll,=C(Ixll+llTxll) for every x eD(T). For every
x eD(T) with Ilxll=l, it follows that IIT*TxlI.,>=I(T*Tx)(x)I=I(Tx, Tx)l
=11Txll and hence Txl]<= C(1 +11TXlIH). Consequently we have for every
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x e D(T) with x 1,

2
which shows the boundedness of T.

Theorem 5. Let E be a Banach space, H be a Hilbert space and T"
H-+E be a densely defined closable linear operator. If R(T’)cD(T), then
T is bounded, where T’" E’-+H is the conjugate operator of T given by
D(T’)= { e E’ D(T) x--+ <Tx, } is continuous} and (T’)(x) <Tx, } for
x e D(T) and e D(T’).

Proof. Remark that R(T’)=R(T’)cD(T)cD(T), where T is the clo-
sure of T. By the manner same to Theorem 4, it follows that T’ is con-
tinuous on D(T’). Remark that the density of D(T’) in E’ is not assumed
in advance. But by Goldberg [2], Corollary II. 4.8, it ollows that D(T)
--H and T is bounded since T is closed.

Corollary. Let T" H-+H be a densely defined closable linear operator
in a Hilbert space H. If T satisfies that R(T*)cD(T), then T is bounded.
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