83. Boundedness of Closed Linear Operator T satisfying $R(T) \subset D(T)$

By Yoshiaki OKAZAKI

Department of Mathematics, Kyushu University

(Communicated by Kôsaku Yosida, M. J. A., Oct. 13, 1986)

1. Let T be a densely defined closed linear operator in a Banach space E satisfying that $R(T) \subset D(T)$. We prove that if T satisfies one of the following conditions:

(1) $||T^2x||||x|| \ge ||Tx||^2$ for every $x \in D(T)$, or

(2) T has the non-empty resolvent set,

then it follows that T is bounded.

Let $T: E \to H$ be a densely defined closed linear operator and $T^*: H \to E'$ be the adjoint operator, where H is a Hilbert space. It is shown that if $R(T) \subset D(T^*)$, then T is bounded.

2. Let *E* be a Banach space and $T: E \rightarrow E$ be a densely defined closed linear operator with the domain D(T) and the range R(T). The following problem was posed by \hat{O} ta [3].

Problem. Suppose that $R(T) \subset D(T)$, then is T bounded?

In general, the answer is negative as shown by Ota [3]. Ota [3] proved that if T is dissipative, then the answer is positive. In this note we investigate other conditions which imply the positive answers for this problem.

After Furuta [1], we say the linear operator $T: E \rightarrow E$ paranormal if $R(T) \subset D(T)$ and if it holds that $||T^2x|| ||x|| \ge ||Tx||^2$ for every $x \in D(T)$.

Theorem 1. Let T be a densely defined closed paranormal operator in a Banach space E. Then T is bounded.

Proof. Since T is closed, $(D(T), ||_T)$ is a Banach space, where $|x|_T = ||x|| + ||Tx||$, $x \in D(T)$. By $R(T) \subset D(T)$, the operator $T^2: (D(T), ||_T) \rightarrow E$ is well defined. By the closedness of T, it follows that T^2 is also closed on $(D(T), ||_T)$, hence bounded. Thus there exists C > 0 such that $||T^2x|| \leq C(||x|| + ||Tx||)$ for every $x \in D(T)$. By the paranormality, we have for every $x \in D(T)$ with ||x|| = 1, $||Tx||^2 \leq ||T^2x|| \leq C(1+||Tx||)$. That is, $||Tx||^2 - C||Tx|| - C \leq 0$. This implies that

$$\|Tx\| \leq \frac{C + \sqrt{C^2 + 4C}}{2} < +\infty,$$

which implies the assertion.

Let T be a linear operator in a Banach space E. The resolvent set $\rho(T)$ of T is the set of all complex numbers λ such that the range $R(\lambda I - T)$ is dense in E and that $\lambda I - T$ has the continuous inverse $(\lambda I - T)^{-1}$ on $D((\lambda I - T)^{-1}) = R(\lambda I - T)$, see Yosida [4], Ch. VIII. It is well known that if T is bounded, then $\rho(T) \neq \emptyset$. The converse is valid for a densely defined

closed linear operator satisfying $R(T) \subset D(T)$.

Theorem 2. Let T be a densely defined closed linear operator in a Banach space E satisfying that $R(T) \subset D(T)$. Suppose that $\rho(T) \neq \emptyset$, then T is bounded.

Proof. Take $\lambda \in \rho(T)$. Since $\lambda I - T$ has the continuous inverse, there exists C > 0 such that $\|(\lambda I - T)x\| \ge C \|x\|$ for every $x \in D(\lambda I - T) = D(T)$. By the closedness of T, it follows that the range $R(\lambda I - T)$ is closed. In fact, let $(\lambda I - T)x_n \rightarrow z$, $x_n \in D(T)$ and $z \in E$. Then by this inequality, $\{x_n\}$ is a Cauchy sequence in E, hence $x_n \rightarrow x$ for some $x \in E$. Thus we have $x_n \rightarrow x$ and $Tx_n \rightarrow \lambda x - z$. By the closedness of T, we have $x \in D(T)$ and $Tx = \lambda x - z$, which shows the assertion. Since $\lambda \in \rho(T)$, $R(\lambda I - T)$ is dense in E, so $R(\lambda I - T) = E$. Consequently it follows that $E = R(\lambda I - T) \subset D(T)$, that is, D(T) = E. Thus T is bounded.

Theorem 3. Let T be a densely defined closed linear operator in a Banach space E satisfying that $R(T) \subset D(T)$. Suppose that there exists N > 0 such that for every n > N, there exists $K_n > 0$ such that $||(nI-T)x|| \ge K_n ||x||$, $x \in D(T)$. Then T is bounded.

Proof. We shall show that D(T)=E. By $R(T) \subset D(T)$, the operator $T: (D(T), | |_{T}) \rightarrow (D(T), | |_{T})$ is well defined and bounded as easily seen, $|x|_{T} = ||x|| + ||Tx||$ for $x \in D(T)$. There exists C > 0 such that $|Tx|_{T} \leq C |x|_{T}$ for every $x \in D(T)$. Let n be n > N and n > C. Then it follows that nI - T has the bounded inverse $(nI - T)^{-1}$ which is everywhere defined on $(D(T), | |_{T})$. Thus we have $D((nI - T)^{-1}) = R(nI - T) = D(T)$. Since $||(nI - T)x|| \geq K_n ||x||$, $x \in D(T)$, by the manner same to Theorem 2, we can see that the range R(nI - T) is closed. Consequently it follows that $E = \overline{D(T)} = R(nI - T) = D(T)$, which proves the assertion.

3. Let *H* be a Hilbert space. Ota [3] proved that if *T* is a densely defined closed linear operator in *H* satisfying that $R(T) \subset D(T^*)$, then *T* is bounded. We shall prove an analogous result for an operator $T: E \rightarrow H$, where *E* is a Banach space and *H* is a Hilbert space.

Let $T: E \to H$ be a densely defined linear operator. The *adjoint* T^* of T is defined by $D(T^*) = \{y \in H; D(T) \ni x \to (Tx, y) \text{ is continuous}\}$ and $(T^*y)(x) = (Tx, y)$ for $x \in D(T)$ and $y \in D(T^*)$. The adjoint T^* is an operator in H into E'.

Theorem 4. Let E be a Banach space, H be a Hilbert space and T: $E \rightarrow H$ be a densely defined closed linear operator. If $R(T) \subset D(T^*)$, then T is bounded.

Proof. Since T is closed, $(D(T), | |_T)$ is a Banach space, where $|x|_T = ||x||_E + ||Tx||_H$. By $R(T) \subset D(T^*)$, the operator $T^*T : (D(T), | |_T) \rightarrow E'$ is well defined. Remarking that T^* is closed since D(T) is dense, we can see that T^*T is also closed on $(D(T), | |_T)$, hence bounded. There exists C > 0 such that $||T^*Tx||_{E'} = C(||x||_E + ||Tx||_H)$ for every $x \in D(T)$. For every $x \in D(T)$ with $||x||_E = 1$, it follows that $||T^*Tx||_{E'} \ge |(T^*Tx)(x)| = |(Tx, Tx)| = ||Tx||_H^2$ and hence $||Tx||_H^2 \le C(1+||Tx||_H)$. Consequently we have for every

 $x \in D(T)$ with $||x||_E = 1$,

$$\|Tx\|_{H} \leq \frac{C + \sqrt{C^{2} + 4C}}{2} < +\infty,$$

which shows the boundedness of T.

Theorem 5. Let E be a Banach space, H be a Hilbert space and T: $H \rightarrow E$ be a densely defined closable linear operator. If $R(T') \subset D(T)$, then T is bounded, where $T': E' \rightarrow H$ is the conjugate operator of T given by $D(T') = \{\xi \in E'; D(T) \ni x \rightarrow \langle Tx, \xi \rangle \text{ is continuous} \}$ and $(T'\xi)(x) = \langle Tx, \xi \rangle$ for $x \in D(T)$ and $\xi \in D(T')$.

Proof. Remark that $R(\overline{T}') = R(T') \subset D(T) \subset D(\overline{T})$, where \overline{T} is the closure of T. By the manner same to Theorem 4, it follows that \overline{T}' is continuous on $D(\overline{T}')$. Remark that the density of $D(\overline{T}')$ in E' is not assumed in advance. But by Goldberg [2], Corollary II. 4.8, it follows that $D(\overline{T}) = H$ and \overline{T} is bounded since \overline{T} is closed.

Corollary. Let $T: H \rightarrow H$ be a densely defined closable linear operator in a Hilbert space H. If T satisfies that $R(T^*) \subset D(T)$, then T is bounded.

References

- T. Furuta: On the class of paranormal operators. Proc. Japan Acad., 43, 594-598 (1967).
- [2] S. Goldberg: Unbounded Linear Operators, Theory and Applications. McGraw Hill Comp. (1966).
- [3] S. Ôta: Closed linear operators with domain containing their range. Proc. Edinburgh Math. Soc., 27, 229-233 (1984).
- [4] K. Yosida: Functional Analysis. Die Grundlehren der Math., vol. 123, Springer-Verlag (1968).