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This paper is concerned with the asymptotic behavior of solutions to
the following problem" given f,go, gl and u0, find u such that

--U-U dv f, v e fl(u) in (0, co) /2
3t

( 1
v go on (0, oo) F0
3v
---4- p. v gl on (0, co) (F\ F0)

u(0) u0 in ,
where is a bounded domain in R with smooth boundary F, F0 is a com-
pact subset of F with positive surface measure, p is a positive bounded
measurable function on F and is a maximal monotone graph in RR.
In [6] and [7], the global behavior of solutions to (1) is studied in case
when/9 is Lipschitz continuous. This case corresponds to a Stefan problem
in a weak sense. But, for instance, in the weak formulations of free
boundary problems arising from Hele-Shaw flows and electro-chemical
machining processes, is in general multi-valued (cf. [3, 8, 12, 13, 14, 15]).
In [10] and [11], the stability of solutions to general evolution equations
generated by time-dependent subdifferentials is studied. But their results
do not seem to be directly applicable to our problem. In this paper, we
extend.a part of the results in [7] to a class of including the case of
Hele-Shaw flows and electro-chemical machining processes.

Let us use the notations: H=L202) .with inner product (., .)z. And
put V={z e H:(/2) z=0 a.e. on F0}. Then V becomes a Hilbert space with
inner product

ax+[ ar v.(z,
d

We denote by V* the dual space of V and regard V* as a Hilbert space with
inner product (z, y).-- (z, F-y,,. and norm Izl,-- (z, z}: where (., },,
is the duality between V* and V and F is the duality mapping from V
onto V*.

Definition 1. For given constants aO and bO, let B(a,b) be the
set of all maximal monotone graph fl in RXR such that fl--3 for some

’R-+RU(c} proper 1.s.c. (lower-semicontinuous) convex function with
(0)--0 and (r)a Irl2-b for all r s R.
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In the problem associated with Hele-Shaw flows,
the Heaviside graph, so that e B(1, 1).

1,1Given e B(a, b) and g e Woo(R; H), we define a unction on V* or
each t e R by

(z)= l [ (z(x)) dx--(g(t), z) if z e H(2)
c i z e V*\H.

Lemma 1 (cf. [4, 5]). For each t e R, D i8 a proper 1.s.c. convex func-
tion on V* with D(*)= {z e H; j(z) e Ll(tO)} and for u, u* e V*, u* e 3t(u) if
and only if the following conditions hold:

( ) u e D().
(ii) There exists v e H such that v--g(t)e V, u* =F(v-g(t)) and v(x)

e fl(u(x)) for a.e. x e
Now consider the nonlinear evolution equation in V*:

3 u’(t) +3*(u(t)) f(t), or a.e. t e R/.
On account of Lemma 1, this expression is nothing but the variational
formulation of problem (1), provided that we take as g(t, .) the function
determined by go and g, in a suitable way (see [4, 5]).

Definition 2. Let fl and g be as above and let f e Loo(R; V*). Then
u:J=[to, t,]V* is called a solution to E(, g, f) on J, if it satisfies the
ollowing conditions:

Wo((to, t]; V*).(a) u e C(J’ V<) A 1,2

(b) t?t(u(t)) is in L(J), where ?, t e R is given by (2).
(c) (3) holds.

Also or general interval J in R, u :J-+V* is called a solution to E(fl, g, f),
if it is a solution to E(, g, f) on every compact subinterval of J in the
above sense.

By virtue of the general existence-uniqueness result (cf. [9]), we have
1,1 Loc(R V*) and UoLemma 2. For given e B(a, b), g e Wloc(R; H) f e

in the closure of {z e H; (z)e L1(2)} in V*, there exists a unique solution
u to E(fl, g, f) on R/ with u(0)=u0 such that u e Lo((O, c); H) and t*(u(t))
is in ,Woo((0, )).

We are interested in the periodic and almost periodic behavior of
solutions to E(fl, g, f) on R. We shall state only the results about the
almost periodicity of solutions. In case when f and g are periodic with
the same period T, the corresponding results are obtained as corollaries
of them, because in this case every V*-bounded solution on R must be T-
periodic (cf. [7]). For the periodic case, also see [8].

1,1 H) be an H-almost periodicTheorem. Let fie B(a, b), g e Wlo(R;
function and f Loo(R; V*) be a V*-almost periodic function in the sense
of Stepanov (cf. [1]). Suppose that sup’teR Ig’lL(t,t+l;H) (:X:) and that if {t}
is a sequence in R and if g(t+ t)--(t) in H uniformly in t e R as n--co,

11then e Wo(R; H) and suPteR]’]n,(t,t+;n) C. Then we have
( ) AP{u; u is a V*-almost periodic solution to E(fl, g, f) on R}=/=.
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(ii) For each solution u to E(, g, f) on R/, there exists o e AP such
that u(t)--o(t)-O in V* and weakly in H as t--c.

(iii) Let o, (o e AP and let o+F(--g)=f, e ((o) a.e. on R, i= 1, 2.
Then v(t)=v(t) for a.e. t e R and there is an element in H such that o(t)
=(t)+a for all t e R.

(iv) A solution u to E(, g, f) on R is V*-almost periodic if and only

if u is V*-bounded on R i.e. supe lu(t)l.
The proof is similar to that in [7]. The different point is the ollow-

ing Lemma.
Lemma 3. Let , g and f be as in the Theorem. Suppose that u

(i=1, 2) are solutions to E(fl, g, f) on an interval J. Assume that
( 4 ) tlu(t)--u(t)l, is constant on J.
Then we have
( 5 ) u(t)=u(t) for a.e. t e J.

Proof. We use the technique in (2). Let p, t e R be given by (2)and
let u+F(v-g)=f and v e fl(u) a.e. on J (i=1, 2). Then we have

t (u(t-- h))-pt(u(t))=, (u(t+h)) dx-- (u(t)) dx--(g(t+h), u(t+h)),+(g(t), u(t))

>= (v(t), u(t+ h) u(t))
(v(t)--g(t), u(t+ h)-u(t)).,--(g(t+ h)-- g(t), u(t+ h))n

=(f(t)-u(t), u(t+h)--u(t)).--(g(t+h)--g(t), u(t+h))n, i=1, 2.
Since u, i=1, 2 are weakly continuous in H, we obtain by dividing both
sides of the above inequality by h and letting h---0,

( 6 d-d-{9(u(t))}=(f(t)-u(t), u(t)).-(g’(t), u(t))
dt

for a.e. t e J, i=1, 2.
On the other hand, from (4) and [11; Lemma 4.4], we have

f(t)--u(t) e 39(u,(t)) and f(t)--u(t) e 39(u(t)) for a.e. t e J.
From this fact we have similarly

( 7 ) d-{9(u,(t))}=(f(t)-u’(t), u(t)).--(g’(t), u(t)),
dt

for a.e. t e J
and

(8) d [t(u2(t)) (f(t) u(t), us(t)); -(g’(t), u2(t))n
dt

for a.e. t e J.
Combining (6), (7) and (8) we obtain (5).
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