99. A Note on a Global Version of the Coleman Embedding

By Humio ICHIMURA

Department of Mathematics, University of Tokyo

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 12, 1986)

- § 1. Introduction. Let l be an odd prime number and $(\zeta_{\nu})_{\nu\geq 1}$ be a fixed system of primitive l^{ν} -th root of unity with $\zeta_{\nu+1}^{l}=\zeta_{\nu}$. Let Ω_{l}^{-} be the "minus part" of the maximum pro-l abelian extension Ω_{l} over the cyclotomic field $\mathbf{Q}(\mu_{l})$ unramified outside l, and set $\mathfrak{G}=\mathrm{Gal}\,(\Omega_{l}^{-}/\mathbf{Q}(\mu_{l}))$. Let \mathfrak{U} be the inertia group of an extension of l in $\Omega_{l}^{-}/\mathbf{Q}(\mu_{l})$, and let \mathfrak{U} be the projective limit of the principal unit group of $\mathbf{Q}_{l}(\zeta_{\nu})$ w.r.t. the relative norm.
- R. Coleman [1] constructed an embedding (w.r.t. the system $(\zeta_{\nu})_{\nu}$) [Col]': $\mathfrak{U}' \rightarrow Z_{l}[[T]]^{\times}$, which is a basic tool in the theory of cyclotomic fields. By class field theory, [Col]' induces, naturally, an embedding [Col]: $\mathfrak{U} \rightarrow Z_{l}[[T]]^{\times}$. Under the conjecture (\mathfrak{C}) that $L_{l}(m, \omega^{1-m}) \neq 0$ for any odd integer $m \geq 3$, we can extend [Col] to a homomorphism $\mathfrak{G} \rightarrow Q_{l}[[T]]^{\times}$ as follows (where ω denotes the Teichmüller character and $L_{l}(s, \omega^{1-m})$ denotes the l-adic L-function): Note that for $\rho \in \mathfrak{U}$,

[Col](
$$\rho$$
) = exp $\left(\sum_{\substack{m\geq 3\\\text{odd}}} \frac{\varphi_m(\rho)}{m!} X^m\right)$

where φ_m is the Coates-Wiles homomorphism and $X = \log (1+T)$. Let χ_m be the Kummer character w.r.t. the system of the l-units

$$\varepsilon_{\nu}(m) = \prod_{\substack{1 \leq a \leq l^{\nu} \\ (a,l)=1}} (\zeta^{a}_{\nu} - 1)^{a^{m-1}},$$

i.e. χ_m is a homomorphism $\mathfrak{G} \rightarrow \mathbb{Z}_t$ such that

$$(\varepsilon_{\nu}(m)^{1/l\nu})^{\rho-1} = \zeta_{\nu}^{\chi_m(\rho)}$$

for any $\nu \ge 1$ and $\rho \in \mathfrak{G}$. This Kummer character is considered in Soulé [8], Deligne [3] and Ihara [5]. See, also, Ichimura-Sakaguchi [4]. By Coleman, $\chi_m \mid \mathfrak{U} = (1 - l^{m-1}) L_l(m, \omega^{1-m}) \varphi_m$. Therefore, under the conjecture (\mathfrak{G}), the homomorphism

$$\boldsymbol{\psi}: \boldsymbol{\Theta} \ni \boldsymbol{\rho} \mapsto f_{\boldsymbol{\rho}}(T) = \exp\left(\sum_{\substack{m \geq 3 \\ \text{odd}}} \frac{(1-l^{m-1})^{-1}L_{l}(m,\boldsymbol{\omega}^{1-m})^{-1}\boldsymbol{\chi}_{m}(\boldsymbol{\rho})}{m\,!} X^{m}\right) \in \boldsymbol{Q}_{l}[[T^{\times}]]$$

is a global version of [Col], i.e. $\psi \mid \mathfrak{U} = [Col]$.

The purpose of this note is to study some properties of ψ . Clearly, $\psi^{-1}(Z_{l}[[T]]^{\times})\supset \mathfrak{U}$ Ker ψ . But since there appear $L_{l}(m, \omega^{1-m})^{-1}$ in the coefficient of T^{m} of $f_{\rho}(T)$, there may be some $\rho \in \mathfrak{G}$ such that $f_{\rho}(T) \notin Z_{l}[[T]]^{\times}$. The main aim of this note is to show the following

Theorem (Under the conjecture (\mathfrak{C})). $\psi^{-1}(Z_{\ell}[[T]]^{\times}) = \mathfrak{U} \operatorname{Ker} \psi$.

Further, we prove a proposition on the kernel of ψ .

Acknowledgement. The author is very grateful to Prof. Y. Ihara for suggesting him that [Col] can be extended to ψ as stated above and

for encouraging him during the preparation of this note.

§ 2. Proof of Theorem. In this section, we always assume the conjecture (§). For a $Z_l[\operatorname{Gal}(Q(\zeta_l)/Q)]$ -module M and an integer j, $M^{(j)} = M^{(j \operatorname{mod}(l-1))}$ denotes the ω^j -eigenspace of M. For an odd integer i with $1 \le i \le l-2$, $\psi^{(i)}$ denotes the homomorphism $\psi \mid \mathfrak{G}^{(i)} : \mathfrak{G}^{(i)} \to Q_l[[T]]^{\times}$. Then the theorem is equivalent to the following

Theorem' (Under the conjecture (\mathfrak{C})). $(\psi^{(i)})^{-1}(\mathbf{Z}_{l}[[T]]^{\times}) = \mathfrak{U}^{(i)} \operatorname{Ker} \psi^{(i)}$.

When i=1, we see that $\mathfrak{G}^{(i)}=\mathfrak{U}^{(i)}$ by using the Stickelberger theorem (see e.g. Washington [9], Proposition 6.16). So, in this case, Theorem' is obvious. In the following, we always assume i>1.

Before the proof for i>1, we recall some facts on a certain power series G_{ρ} . For an odd integer j and $\rho \in \mathfrak{G}^{(j)}$, set

$$G_{\rho}^{(j)} = \exp\left(\sum_{m \equiv j} \frac{(1 - l^{m-1})^{-1} \chi_m(\rho)}{m!} X^m\right).$$

This power series has been constructed in Ihara [5], and its properties are investigated by G. Anderson, Coleman and Ihara-Kaneko-Yukinari [6]. It is known that for i>1, $G_{\rho}^{(i)}\in Z_{l}[[T]]^{\times}$ and $\mathfrak{N}(G_{\rho}^{(i)})=G_{\rho}^{(i)}$ where \mathfrak{N} denotes the Coleman norm operator. So, $G_{\rho}^{(i)}$ (i>1) is a Coleman power series of some element of $\mathfrak{N}^{(i)}$.

To prove Theorem' for i>1, it suffices to show that $(\psi^{(i)})^{-1}(Z_{l}[[T]]^{\times}) \subset \mathfrak{U}^{(i)}$ Ker $\psi^{(i)}$. Assume $f_{\rho} \in Z_{l}[[T]]^{\times}$ with $\rho \in \mathfrak{G}^{(i)}$. We easily see that $f_{\rho}^{g_{i}} = f_{\rho g_{i}} = G_{\rho}^{(i)}$ where $g_{i} \in Z_{l}[[T]]$ is the power series such that $g_{i}((1+l)^{s}-1) = L_{l}(s, \omega^{1-i})$. Let λ denote the map: $Z_{l}[[T]]^{\times} \ni f \mapsto \lambda f = (1-\varphi/l) \log f \in Z_{l}[[T]]$, and let \mathfrak{S} denote the Coleman trace operator acting on $Z_{l}[[T]]$. Then since $G_{\rho}^{(i)}$ is a Coleman power series, $0 = \mathfrak{S}(\lambda G_{\rho}^{(i)}) = \mathfrak{S}(\lambda f_{\rho})^{g_{i}}$. From this, it is easy to see that $D^{M}(\mathfrak{S}(\lambda f_{\rho})) = 0$ for some $M(<\infty)$, where D = (1+T)d/dT. Hence, by Coleman [2], $\mathfrak{S}(D^{M}(\lambda f_{\rho})) = 0$. Set $V = \{g \in Z_{l}[[T]]; \mathfrak{S}(g) = 0\}$. By [2], $Z_{l}[[T]] = V + \varphi(Z_{l}[[T]])$ (disjoint sum) and D(V) = V, $D(\varphi(Z_{l}[[T]])) \subset \varphi(Z_{l}[[T]])$. Using this fact, we easily see that $D^{M}(\lambda f_{\rho} - g) = 0$ for some $g \in V^{(i)}$. But since i>1, g comes from a Coleman power series, i.e. $g = \lambda f_{\varepsilon}$ for some $\varepsilon \in \mathfrak{U}^{(i)}$. Hence, as

$$\lambda f_{\rho} - g = \sum_{m = i} \frac{L_{l}(m, \omega^{1-i})^{-1} \chi_{m}(\rho \cdot \varepsilon^{-1})}{m!} X^{m}$$

 $\chi_m(\rho \cdot \varepsilon^{-1}) = 0$ except for a finite number of m's. Since χ_m is continuous in m, this implies that $\chi_m(\rho \cdot \varepsilon^{-1}) = 0$ for all $m \equiv i$. Therefore, $\rho \cdot \varepsilon^{-1} \in \bigcap_{m \equiv i} \operatorname{Ker} \chi_m = \operatorname{Ker} \psi^{(i)}$, hence $\rho \in \mathfrak{U}^{(i)} \operatorname{Ker} \psi^{(i)}$. This completes the proof of Theorem'.

§ 3. The kernel of ψ . Let Cyclo be the subextension of $\Omega_l^-/\mathbf{Q}(\mu_{l^{\infty}})$ corresponding to $\bigcap_{\substack{m\geq 1\\\text{odd}}} \operatorname{Ker} \chi_m$. Then under the conjecture (©), the field Cyclo corresponds to $\operatorname{Ker} \psi$. In [4] § 3, we proved that Ω_l^- is unramified over Cyclo and that under the Vandiver conjecture for l, Cyclo $=\Omega_l^-$. In this section, we prove the following

Proposition. (i) Cyclo= Ω_l^- if and only if there exist $\rho \in \mathfrak{G}$ and $c \in \mathbb{Z}_l$ $-\{0\}$ such that for all odd integers $m \ge 1$, $\chi_m(\rho) = c$. (ii) The characteristic

power series of the torsion $\Lambda (= \mathbb{Z}_{l}[[T]])$ -module $\operatorname{Gal}(\Omega_{l}^{-}/\operatorname{Cyclo})$ has no linear factors if and only if $[\mathbb{Z}_{l}: \operatorname{Image} \chi_{m}]$ are bounded as odd integers $m \to \infty$.

Remark. (1) By some computation on $\varepsilon_{l}(m)$, the Vandiver conjecture for l is valid if and only if there is $\rho \in \mathfrak{G}$ such that for all odd integers $m \ge 1$, $\chi_m(\rho) = 1$. So, Proposition (i) asserts that the Vandiver conjecture for l and Ω_l^- Cyclo are "almost" equivalent.

(2) By Soulé, $\chi_m \neq 0$, hence $[Z_l: \text{Image } \chi_m] < \infty$. See [4] § 2.

Proof of the proposition. It suffices to prove the $\Delta = \operatorname{Gal}(\mathbf{Q}(\zeta_1)/\mathbf{Q})$ -decomposed version of the proposition. Let i be an odd integer with $1 \le i \le l-2$. Let $\Omega_i^{(i)}$ denote the subextension of $\Omega_l^-/\mathbf{Q}(\mu_{l^{\infty}})$ corresponding to $\bigoplus_{j \ne l} \mathfrak{G}^{(j)}$ and set $C^{(i)} = \Omega_l^{(i)} \cap \operatorname{Cyclo}$. For i = 1, $C^{(1)} = \Omega_l^{(1)}$ because $\mathfrak{G}^{(1)} = \mathfrak{U}^{(1)}$ and $\Omega_l^-/\operatorname{Cyclo}$ is unramified. Further, by some computation on $\varepsilon_{\nu}(m)$, we see that there exists $\rho \in \mathfrak{G}^{(1)}$ such that for all $m \equiv 1$, $\chi_m(\rho) = 1$. Hence, when i = 1, the proposition is valid. So, in the following, we assume i > 1.

First, we assume the conjecture (©). Let $G^{(i)}$ denote the map: $\mathfrak{G}^{(i)} \ni \rho \mapsto G_{\rho}^{(i)} \in Z_{l}[[T]]^{\times}$. Then Image $\lambda \circ G^{(i)} \subset V^{(i)}$. We easily see that torsion Λ -modules $V^{(i)}/\text{Image }\lambda \circ G^{(i)}$ and $\ker G^{(i)} (=\ker \psi^{(i)})$ have the same characteristic power series by using the facts (1) $\Omega_{l}^{-}/\text{Cyclo}$ is unramified, (2) $\lambda \circ [\text{Col}](\mathfrak{U}^{(i)}) = V^{(i)}$ (see [2]) and (3) $f_{\rho \sigma i} = G_{\rho}^{(i)}$. Now our assertions follow immediately from this and the facts (4) $V^{(i)}$ is a free Λ -module generated by $\sum_{m=i} (1/m!) X^m$ (see [2]), (5) $\mathfrak{G}^{(i)}$ has no nontrivial finite Λ -submodule (see Iwasawa [7]).

The proof of the general case goes through similarly by considering power series

$$\begin{split} &\exp\left(\sum_{m}'\frac{(1-l^{m-1})^{-1}L_{l}(m,\omega^{1-m})^{-1}\chi_{m}(\rho)}{m\,!}\,X^{m}\right)\\ &\exp\left(\sum_{m}'\frac{\varphi_{m}(\rho)}{m\,!}\,X^{m}\right)\quad\text{and}\quad \exp\left(\sum_{m}'\frac{(1-l^{m-1})^{-1}\chi_{m}(\rho)}{m\,!}\,X^{m}\right) \end{split}$$

instead of f_{ρ} , [Col](ρ) and $G_{\rho}^{(i)}$ respectively where the sum \sum_{m}' is taken over all natural numbers with $m \equiv i \pmod{l-1}$ and $L_{l}(m, \omega^{1-m}) \neq 0$.

References

- [1] R. Coleman: Division values in local fields. Inv. Math., 53, 91-116 (1979).
- [2] —: Local units modulo circular units. Proc. Amer. Math. Soc., 89, 1-7 (1983).
- [3] P. Deligne: (letters to Bloch).
- [4] H. Ichimura and K. Sakaguchi: The non-vanishing of certain Kummer character χ_m (after Soulé), and some related topics (to appear in Adv. St. in Pure Math., 12).
- [5] Y. Ihara: Profinite braid groups, Galois representations and complex multiplications. Ann. of Math., 123, 43-109 (1986).
- [6] Y. Ihara, M. Kaneko and A. Yukinari: On some properties of the universal power series for Jacobi sums (to appear in Adv. St. in Pure Math., 12).
- [7] K. Iwasawa: On Z_l -extensions of algebraic number fields. Ann. of Math., 98, 246-326 (1973).
- [8] C. Soulé: (letter to Ihara).
- [9] L. Washington: Introduction to Cyclotomic Fields. Graduate Texts in Math., Springer-Verlag, New York (1982).