96. Product of Linear Operators with Closed Range

By Gyokai Nikaido
Department of Mathematics, Science University of Tokyo
(Communicated by Kôsaku Yosida, M. J. A., Nov. 12, 1986)

1. Introduction. Let X, Y be normed linear spaces and let T be a linear operator with domain $\mathrm{D}(T)$ in X and range $\mathrm{R}(T)$ in Y. The null space of T is denoted by $\mathrm{N}(T)$. Then the lower bound (or reduced minimum modulus) of T is defined by

$$
\gamma(T)=\sup \{\gamma:\|T x\| \geqq \gamma \operatorname{dist}(x, \mathrm{~N}(T))(x \in \mathrm{D}(T))\}
$$

where dist $(x, \mathrm{~N}(T)$) denotes the distance from x to $\mathrm{N}(T)$. If X, Y are Banach spaces and T is a closed linear operator, then it is well known that $\mathrm{R}(T)$ is a closed subspace of Y if and only if $\gamma(T)>0$ (cf. [2]).

Now let Z be another normed linear space and let S be a linear operator from Y to Z. Then the product $S T$ of S and T is defined as a linear operator from X to Z. In [3], an estimate is obtained bounding $\gamma(S T)$ from below in terms of the product of $\gamma(S)$ and $\gamma(T)$. The main purpose of this note is to give the estimate of $\gamma(\hat{S})$, where \hat{S} denotes the restriction of S to $\mathrm{R}(T)$. As a consequence, we can obtain a result of R . Bouldin which gives a necessary and sufficient condition for the product $S T$ to have closed range in case S is a bounded linear operator with $\mathrm{D}(S)=Y$ (cf. [1]).
2. Gap and angular distance between closed subspaces. Let E be a normed linear space and let M, N be non-trivial closed subspaces of E. We denote by S_{M} the set of all $x \in M$ such that $\|x\|=1$. In this section, we consider the following quantities between M and N :

$$
\begin{aligned}
& \alpha(M, N)=\inf \left\{\|x-y\|: x \in S_{M}, y \in S_{N}\right\}, \\
& \beta(M, N)=\sup \{\beta: \operatorname{dist}(x, N) \geqq \beta\|x\|(x \in M)\}, \\
& \gamma(M, N)=\sup \{\gamma: \operatorname{dist}(x, N) \geqq \gamma \operatorname{dist}(x, M \cap N)(x \in M)\},
\end{aligned}
$$

and study the relations between them. $\alpha(M, N)$ is called the angular distance between M, N; while $\gamma(M, N)$ is called the gap between M, N (cf. [1], [2]). For a Banach space E, it is well known that $\gamma(M, N)>0$ if and only if $M+N$ is a closed subspace of E (cf. [2]).

Lemma 1. $\beta(M, N) \leqq \alpha(M, N) \leqq 2 \beta(M, N)$.
Proof. Since we have

$$
\begin{aligned}
& \alpha(M, N)=\inf \left\{\operatorname{dist}\left(x, S_{N}\right): x \in S_{M}\right\} \\
& \beta(M, N)=\inf \left\{\operatorname{dist}(x, N): x \in S_{M}\right\}
\end{aligned}
$$

it is clear that $\beta(M, N) \leqq \alpha(M, N)$. The other inequality follows from the following fact which is proved in [2] on p. 198: $\operatorname{dist}\left(x, S_{N}\right) \leqq 2 \operatorname{dist}(x, N)$
for any $x \in E$ with $\|x\|=1$.
Theorem 2. $\quad \gamma(M, N) \leqq \alpha(M / M \cap N, N / M \cap N) \leqq 2 \gamma(M, N)$.

Proof. First we consider the special case where $M \cap N=\{0\}$. Then by the above lemma, we have

$$
\gamma(M, N)=\beta(M, N) \leqq \alpha(M, N) \leqq 2 \beta(M, N)=2 \gamma(M, N)
$$

In the general case where $M \cap N \neq\{0\}$, we set $E_{o}=M \cap N$ and consider the quotient space $\tilde{E}=E / E_{o}$. We denote by \tilde{u} the coset to which u belongs. Since E_{o} is closed, \tilde{E} is also a normed linear space under the quotient norm. Let $\tilde{M}=M / E_{o}$ and $\tilde{N}=N / E_{o}$. Then \tilde{M} and \tilde{N} are closed subspaces of \tilde{E} with $\tilde{M} \cap \tilde{N}=\{\tilde{0}\}$ and it is easily verified that

$$
\begin{aligned}
& \operatorname{dist}(\tilde{u}, \tilde{N})=\operatorname{dist}(u, N) \\
& \operatorname{dist}(\tilde{u}, \tilde{M} \cap \tilde{N})=\|\tilde{u}\|=\operatorname{dist}(u, M \cap N)
\end{aligned}
$$

so that we have $\beta(\tilde{M}, \tilde{N})=\gamma(M, N)$. Hence the proof of the general case follows from the above lemma as follows:

$$
\gamma(M, N)=\beta(\tilde{M}, \tilde{N}) \leqq \alpha(\tilde{M}, \tilde{N}) \leqq 2 \beta(\tilde{M}, \tilde{N})=2 \gamma(M, N)
$$

Corollary 3. Let E be a Banach space and let M, N be closed subspaces of E. Then the following conditions are equivalent:
(1) $M+N$ is a closed subspace of E.
(2) $\quad \gamma(M, N)>0 . \quad$ (3) $\quad \alpha(M / M \cap N, N / M \cap N)>0$.

Remark 4. If E is an inner product space over the complex numbers, then we have the following improved estimate between $\alpha(M, N)$ and $\beta(M, N)$:

$$
\beta(M, N) \leqq \alpha(M, N) \leqq \sqrt{2} \beta(M, N) .
$$

This follows from the following relations:

$$
[\alpha(M, N)]^{2}=2[1-\tau(M, N)], \quad[\beta(M, N)]^{2}+[\tau(M, N)]^{2}=1
$$

where $\tau(M, N)$ is defined by

$$
\tau(M, N)=\sup \left\{|\langle a, b\rangle|: a \in S_{M}, b \in S_{N}\right\}
$$

3. Estimate of the lower bound. Throughout this section, we assume that X, Y, Z are normed linear spaces, T is a linear operator from X to Y, S is a non-trivial linear operator from Y to Z and $\mathrm{R}(T), \mathrm{R}(S)$ are closed subspaces of Y, Z respectively. Moreover, we denote by \hat{S} the restriction of S to $\mathrm{R}(T): \hat{S}(T x)=S(T x)(x \in \mathrm{D}(S T))$.

In this section, we shall prove the following estimate of the lower bound of \hat{S}.

Theorem 5. (1) $\gamma(\hat{S}) \geqq \gamma(S) \gamma(\mathrm{R}(T), \mathrm{N}(S))$.
(2) If S is a bounded linear operator with $\mathrm{D}(S)=Y$, then we have:

$$
\|S\| r(\mathrm{R}(T), \mathrm{N}(S)) \geqq r(\hat{S})
$$

Proof. Since $\mathrm{N}(\hat{S})=\mathrm{N}(S) \cap \mathrm{R}(T)$, we have

$$
\begin{aligned}
\|\hat{S}(T x)\| & =\|S(T x)\| \geqq r(S) \operatorname{dist}(T x, \mathrm{~N}(S)) \\
& \geqq r(S) r(\mathrm{R}(T), \mathrm{N}(S)) \operatorname{dist}(T x, \mathrm{~N}(S) \cap \mathrm{R}(T)) \\
& =\gamma(S) r(\mathrm{R}(T), \mathrm{N}(S)) \operatorname{dist}(T x, \mathrm{~N}(\hat{S}))
\end{aligned}
$$

for each $x \in \mathrm{D}(S T)$. Hence we get $\gamma(\hat{S}) \geqq \gamma(S) \gamma(\mathrm{R}(T), \mathrm{N}(S))$.
Now assume that S is a bounded operator with $\mathrm{D}(S)=Y$ and let $x \in$ $\mathrm{D}(S T)=\mathrm{D}(T)$. Then for any $y \in \mathrm{~N}(S)$, we have

$$
\|S T x\|=\|S(T x-y)\| \leqq\|S\|\|T x-y\|
$$

and hence

$$
\|S T x\| \leqq\|S\| \operatorname{dist}(T x, \mathrm{~N}(S))
$$

On the other hand, we also have

$$
\begin{aligned}
\|S T x\| & =\|\hat{S}(T x)\| \geqq r(\hat{S}) \operatorname{dist}(T x, \mathrm{~N}(\hat{S})) \\
& =\gamma(\hat{S}) \operatorname{dist}(T x, \mathrm{~N}(S) \cap \mathrm{R}(T)) .
\end{aligned}
$$

Therefore we get

$$
\|S\| \operatorname{dist}(T x, \mathrm{~N}(S)) \geqq r(\hat{S}) \operatorname{dist}(T x, \mathrm{~N}(S) \cap \mathrm{R}(T))
$$

for each $x \in \mathrm{D}(T)$, which proves that

$$
\|S\| \gamma(\mathrm{R}(T), \mathrm{N}(S)) \geqq \gamma(\hat{S})
$$

This completes the proof of the theorem.
The following corollary is essentially proved by R. Bouldin in [1].
Corollary 6. Let X, Y, Z be Banach spaces and let S be a bounded linear operator with $\mathrm{D}(S)=Y$. Assume that $\mathrm{R}(S)$ and $\mathrm{R}(T)$ are closed subspaces of Z and Y respectively. Then the following conditions are equivalent:
(1) $\mathrm{R}(S T)$ is a closed subspace of Z.
(2) $\mathrm{N}(S)+\mathrm{R}(T)$ is a closed subspace of Y.

Proof. Since $\mathrm{R}(\hat{\mathrm{S}})=\mathrm{R}(S T)$, this follows from Corollary 3 and Theorem 5.

Corollary 7. Under the same assumptions as in Corollary 6, we have the following estimate of $\gamma(\hat{S})$ in terms of the angular distance:

$$
\|S\| \alpha\left(\mathrm{N}(S) / Y_{o}, \mathrm{R}(T) / Y_{o}\right) \geqq \gamma(\hat{S})
$$

$$
\geqq(1 / 2) \gamma(S) \alpha\left(\mathrm{N}(S) / Y_{o}, \mathrm{R}(T) / Y_{o}\right)
$$

where $Y_{o}=\mathrm{N}(S) \cap \mathrm{R}(T)$.
Proof. This follows from Theorems 2 and 5.
Finally, we note that the following estimate holds between $\gamma(\hat{S})$ and $\gamma(S T)$.

Theorem 8. $\quad \gamma(S T) \geqq \gamma(\hat{S}) \gamma(T)$.
Proof. For any $x \in \mathrm{D}(T)$, we have

$$
\operatorname{dist}(T x, \mathrm{~N}(S) \cap \mathrm{R}(T)) \geqq \gamma(T) \operatorname{dist}(x, \mathrm{~N}(S T))
$$

by Lemma 1 in [3]. Hence we get

$$
\begin{aligned}
\|S T x\| & =\|\hat{S}(T x)\| \geqq \gamma(\hat{S}) \operatorname{dist}(T x, \mathrm{~N}(\hat{S})) \\
& =\gamma(\hat{S}) \operatorname{dist}(T x, \mathrm{~N}(S) \cap \mathrm{R}(T)) \\
& \geqq \gamma(\hat{S}) \gamma(T) \operatorname{dist}(x, \mathrm{~N}(S T))
\end{aligned}
$$

for any $x \in \mathrm{D}(S T)$. This proves the desired estimate.
The following corollary, which is proved in [3], is immediate from Theorems 5 and 8.

Corollary 9. $\quad \gamma(S T) \geqq \gamma(S) \gamma(T) \gamma(\mathrm{R}(T), \mathrm{N}(S))$.

References

[1] R. Bouldin: Closed range and relative regularity for products. J. Math. Anal. Appl., 61, 397-403 (1977).
[2] T. Kato: Perturbation Theory for Linear Operators. Die Grundlehen der math. Wissenschaften, Band 132, (2nd ed.), Springer-Verlag, Berlin and New York (1976).
[3] G. Nikaido: Remarks on the lower bound of a linear operator. Proc. Japan Acad., 56A, 321-323 (1980).

