117. A Note on the Approximate Functional Equation for $\zeta^{2}(s)$. III

By Yoichi Motohashi

Department of Mathematics, College of Science and Technology, Nihon University, Tokyo
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1986)

1. Let $\mathcal{E}_{2}(s, \alpha t / 2 \pi)$ be the error-term in the approximate functional equation for $\zeta^{2}(s)$, i.e.

$$
\mathcal{E}_{2}(s, \alpha t / 2 \pi)=\zeta^{2}(s)-\sum_{n \leqq \alpha t / 2 \pi}^{\prime} d(n) n^{-s}-\chi^{2}(s) \sum_{n \leqq t / 2 \pi \alpha}^{\prime} d(n) n^{s-1},
$$

where $\chi(s)$ is the Γ-factor in the functional equation for $\zeta(s)$, and the prime indicates that $d(\alpha t / 2 \pi)$ and $d(t / 2 \pi \alpha)$ are halved; naturally we use the convention that $d(x)=0$ if x is not an integer.

The problem of finding an asymptotic expansion for $\mathcal{E}_{2}(s, \alpha t / 2 \pi)$ has been solved in our former note [2] when $\alpha=1$ the symmetric case. Here we shall show a solution for the non-symmetric case where α is a rational number with a 'not-too-large' denominator. To state our result we introduce some notations: Let $(k, l)=1$, and

$$
\Delta(x, l / k)=\sum_{n \leqq x}^{\prime} d(n) \exp (2 \pi i l n / k)-\frac{x}{k}\left(\log \frac{x}{k^{2}}+2 \gamma-1\right)-E(0, l / k),
$$

where γ is the Euler constant, and $E(0, l / k)$ is the value at $s=0$ of the analytic continuation of

$$
E(s, l / k)=\sum_{n=1}^{\infty} d(n) \exp (2 \pi i l n / k) n^{-s}
$$

We put

$$
\begin{aligned}
Y(s, l / k)= & -\exp (\pi i / 4)(2 \pi / t)^{1 / 2}(l / k)^{1-s} \Delta(l t / 2 \pi k, l / k) \\
& +\frac{1}{2 \sqrt{\pi}} \exp (\pi i / 4)(l / k)^{1 / 2-s}(k l / 2 \pi t)^{1 / 4} \sum_{n=1}^{\infty} d(n) \\
& \times \exp (-2 \pi i \bar{l} n / k) h(n / k l) n^{-3 / 4},
\end{aligned}
$$

where $l \bar{l} \equiv 1(\bmod k)$ and

$$
h(x)=\int_{0}^{\infty} \exp (-i \pi x \xi)(\xi+1)^{-3 / 2} d \xi
$$

Theorem. Let $(k, l)=1, l<k, k l \leqq t(\log t)^{-20}$. Then we have, for $0 \leqq \sigma$ $\leqq 1$,

$$
\chi(1-s) \mathcal{E}_{2}(s, l t / 2 \pi k)=Y(s, l / k)+\bar{Y}(1-\bar{s}, k / l)+O\left((l / k)^{1 / 2-\sigma}(k l / t)^{1 / 2}(\log t)^{3}\right)
$$

Remarks. As has been observed by Jutila ([1, p. 105]), $\mathcal{E}_{2}(s, \alpha t / 2 \pi)=$ $\Omega(\log t)$ when α is very close to 1 (e.g. $\alpha=1-c t^{-1 / 2}$). Thus, if $k l \gg t$ then $\mathcal{E}_{2}(s, l t / 2 \pi k)$ cannot be small in general. But our result implies that if $k l$ is relatively small then the approximation becomes significant. This reminds us of the 'major-arc, minor-arc' situation in the theory of trigonometrical method. It should be noted also that the O-term in our theorem
may be replaced by an asymptotic series in terms of $(k l / t)^{1 / 4}$.
2. We show here an outline of the proof. The details will be given elsewhere.

By the splitting argument of Dirichlet we get, as before,

$$
\begin{aligned}
\mathcal{E}_{2}(s, l t / 2 \pi k)= & 2 \chi(s) k^{s-1} l^{-s} \sum_{n \leqq(t / 2 \pi k l) 1 / 2} n^{-1}+\left\{\mathcal{E}_{1}\left(s,(l t / 2 \pi k)^{1 / 2}\right)\right\}^{2} \\
& +2 G(s, l / k)+2 \chi^{2}(s) G(1-s, k / l),
\end{aligned}
$$

where

$$
G(s, l / k)=\sum_{n \leqq(t / 2 \pi k)^{1 / 2}} n^{-s} \mathcal{C}_{1}(s, l t / 2 \pi k n)
$$

and

$$
\mathcal{E}_{1}(s, x)=\zeta(s)-\sum_{n \leqq x} n^{-s}-\chi(s) \sum_{n \leqq t / 2 \pi x} n^{s-1} .
$$

We note that the integral representation, due to Riemann and Siegel, of $\mathcal{E}_{1}(s, x)$ is valid as far as $x \ll t^{c}$. Thus we have, for $k l \ll t^{c}$,

$$
\begin{aligned}
G(s, l / k)= & (2 \pi i)^{-1} \chi(s)(l / k)^{1-s} \sum_{n \leqq(t / 2 \pi k))^{1 / 2}} n^{-1} \exp (-2 \pi i k n[l t / 2 \pi k n] / l) \\
& \times \int_{L}(\exp (w+2 \pi i k n / l)-1)^{-1} \exp \left(i w^{2} l^{2} t / 8 \pi^{2} k^{2} n^{2}+\{l t / 2 \pi k n\} w\right) d w \\
& +O\left(\chi(s)(l / k)^{1 / 2-\sigma}(k l / t)^{1 / 2} \log t\right),
\end{aligned}
$$

where $\{x\}=x-[x]$, and L is a straight line in the direction $\arg w=\pi / 4$, passing between 0 and $2 \pi i$. The transformation of this integral is conducted as in [2], and we see that it is equal to

$$
\begin{aligned}
& -\delta(k n / l) \pi i+\pi^{1 / 2} \exp (\pi i / 4)\left(8 \pi^{2} k^{2} n^{2} / l^{2} t\right)^{1 / 2} \\
& \quad \times\left(\left(\{l t / 2 \pi k n\}-\frac{1}{2}\right) \delta(k n / l)+(\exp (2 \pi i k n / l)-1)^{-1}(1-\delta(k n / l))\right) \\
& \quad+\frac{1}{2} \int_{(5 / 4)} \Gamma(w) \exp (\pi i w / 2)(\cos (\pi w))^{-1}\left(2 k^{2} n^{2} / t\right)^{w} \\
& \quad \times\left(\sum_{m \equiv-k n(\bmod l)} m^{-2 w v} \exp (2 \pi i m\{l t / 2 \pi k n\} / l)\right. \\
& \left.\quad-m_{m \equiv k n(\bmod l)} m^{-2 w} \exp (-2 \pi i m\{l t / 2 \pi k n\} / l)\right) d w,
\end{aligned}
$$

where $\delta(x)=1$ if x is an integer, and $=0$ otherwise. Inserting this into the formula for $G(s, l / k)$ we reduce the problem to the asymptotic evaluation of the sums

$$
\begin{aligned}
& H=\sum_{n \leqq(t / 2 \pi k l) 1 / 2}\left(\{t / 2 \pi k n\}-\frac{1}{2}\right) \\
& +\sum_{\substack{n \neq 0 \text { mod } d) \\
n \leq(l l / 2 \pi k) / 2}}(\exp (2 \pi i k n / l)-1)^{-1} \exp (-2 \pi i k n[l t / 2 \pi k n] / l)
\end{aligned}
$$

and

$$
\begin{aligned}
K(w, m) & =\sum_{\substack{n=\bar{k} m(\bmod l) \\
n \leq(l t / 2 \pi k) / 1 / 2}} n^{2 w-1} \exp (i m t / k n)-\sum_{\substack{n=\bar{k} m(\bmod d) \\
n \leqq(l t / 2 k k) 1 / 2}} n^{2 w-1} \exp (-i m t / k n) \\
& =2 i l^{-1} \sum_{f=0}^{l-1} \exp (2 \pi i f \bar{k} m / l) \sum_{n \leqq(l t / 2 \pi k))^{1 / 2}} n^{2 w-1} \sin (m t / k n+2 \pi f n / l) .
\end{aligned}
$$

In fact we have

$$
\begin{aligned}
G(s, l / k)= & -\frac{1}{2} \chi(s) k^{s-1} l^{-s} \sum_{n \leqq(t / 2 \pi k l)^{1 / 2}} n^{-1}+\exp (-\pi i / 4)(2 \pi / t)^{1 / 2}(k / l)^{s} H \\
& +M+O\left(\chi(s)(l / k)^{1 / 2-\sigma}(k l / t)^{1 / 2} \log t\right),
\end{aligned}
$$

where

$$
\begin{aligned}
M= & (4 \pi i)^{-1} \chi(s)(l / k)^{1-s} \\
& \times \int_{(5 / 4)} \Gamma(w) \exp (\pi i w / 2)(\cos (\pi w))^{-1}\left(2 k^{2} / t\right)^{w} \sum_{m=1}^{\infty} m^{-2 w} K(w, m) d w
\end{aligned}
$$

By an elementary computation one may conclude that

$$
H=-\frac{1}{2} \Delta(l t / 2 \pi k,-k / l)-\frac{1}{4} d(l t / 2 \pi k) \exp (-i t)+O(l \log (2 l))
$$

To $K(w, m)$ we apply the summation formula of Poisson, and evaluate resulting integrals by the saddle point method. The asymptotic result thus obtained is inserted into the w-integral in the formula for M, and we find that M is equal to

$$
\begin{aligned}
& -\frac{1}{2} \exp (-\pi i / 4)(l / k)^{1 / 2-s}(k l / 2 \pi t)^{1 / 4} \sum_{n=1}^{\infty} d(n) n^{-3 / 4} \exp (2 \pi i \bar{k} n / l) h(-n / k l) \\
& \quad+O\left(\chi(s)(l / k)^{1 / 2-\sigma}(k l / t)^{1 / 2}(\log t)^{3}\right)
\end{aligned}
$$

Collecting these we end the proof.

References

[1] A. Ivić: The Riemann zeta-function. John Wiley and Sons Inc., New York (1985).
[2] Y. Motohashi: A note on the approximate functional equation for $\zeta^{2}(s)$. II. Proc. Japan Acad., 59A, 469-472 (1983).

