113. On Triple L-functions

By Takakazu SATOH
Department of Mathematics, Tokyo Institute of Technology
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 12, 1986)

We extend the Garrett's result [3] on triple products to different weight case. Details are described in [5]. Let n be a positive integer and $\Gamma_{n}=$ $S p(n, Z)$. We denote by H_{n} the Siegel upper half space of degree n. Let $S_{k}\left(\Gamma_{1}\right)$ be the space of cuspforms of weight k and of degree one. We write Fourier expansion of $f \in S_{k}\left(\Gamma_{1}\right)$ as $f(z)=\sum_{n=1}^{\infty} a(n, f) e^{2 \pi i n z}$. If $f \in S_{k}\left(\Gamma_{1}\right)$ is a normalized Hecke eigenform and p is a prime, we define semi-simple $M_{p}(f) \in G L(2, C)$ (up to conjugate class) by $\operatorname{det}\left(1-t M_{p}(f)\right)=1-\alpha(p, f) t+$ $p^{k-1} t^{2}$. For normalized Hecke eigenforms f, g and h, define 'triple L function' $L(s ; f, g, h)$ by

$$
L(s ; f, g, h)=\prod_{p: \text { prime }} \operatorname{det}\left(1-p^{-s} M_{p}(f) \otimes M_{p}(g) \otimes M_{p}(h)\right)^{-1}
$$

For Siegel modular forms f_{1}, \cdots, f_{m} and a field K, we denote by $K\left(f_{1}, \cdots, f_{m}\right)$ the field generated by all the Fourier coefficients of f_{1}, \cdots, f_{m} over K. If f and g are C^{∞}-modular forms (of degree one), we put

$$
\langle f, g\rangle_{k}=\int_{\Gamma_{1} \backslash H_{1}} f(x+i y) \overline{g(x+i y)} y^{k-2} d x d y
$$

provided that it converges absolutely. For even integers $r \geq 0, k>4$ and $f \in S_{k+r}\left(\Gamma_{1}\right)$, we denote by $[f]_{r}$ the Klingen type Eisenstein series attached to f and of type $\operatorname{det}^{k} \otimes \mathrm{Sym}^{r}$ St, which is a Siegel modular form of degree two. (Precise definition is given later.)

Theorem A. Let k, l and m be even integers satisfying $k \geq l \geq m$ and $l+m-k>4$. Let $f \in S_{k}\left(\Gamma_{1}\right), g \in S_{l}\left(\Gamma_{1}\right)$ and $h \in S_{m}\left(\Gamma_{1}\right)$ be normalized Hecke eigenforms. Put
$\widetilde{L}(s ; f, g, h)=\Gamma_{\boldsymbol{c}}(s) \Gamma_{\boldsymbol{c}}(s-k+1) \Gamma_{\boldsymbol{c}}(s-l+1) \Gamma_{\boldsymbol{c}}(s-m+1) L(s ; f, g, h)$ where $\Gamma_{c}(s)=2(2 \pi)^{-s} \Gamma(s)$. Then $\tilde{L}(s ; f, g, h)$ meromorphically extends to the whole s-plane and satisfies the functional equation

$$
\tilde{L}(s ; f, g, h)=-\tilde{L}(k+l+m-2-s ; f, g, h)
$$

Moreover, we have

$$
\begin{equation*}
\pi^{5+k-3 l-3 m} L(l+m-2 ; f, g, h) /\left(\langle f, f\rangle_{k}\langle g, g\rangle_{l}\langle h, h\rangle_{m}\right) \tag{1}
\end{equation*}
$$

$$
\in \boldsymbol{Q}\left([f]_{2 k-l-m}, f, g, h\right)
$$

and, if $L((k+l+m) / 2-1 ; f, g, h)$ is finite,

$$
L\left(\frac{k+l+m}{2}-1 ; f, g, h\right)=0
$$

Corollary, Let $f \in S_{k}\left(\Gamma_{1}\right)$ be a normalized Hecke eigenform and $L_{3}(s, f)$ its third L-function. Put

$$
\tilde{L}_{3}(s, f)=\Gamma_{c}(s) \Gamma_{c}(s-k+1) L_{3}(s, f) .
$$

Then $\tilde{L}_{3}(s, f)$ satisfies the functional equation

$$
\tilde{L}_{3}(s, f)=-\tilde{L}_{3}(3 k-2-s, f) .
$$

Especially we have $L_{3}((3 k / 2)-1, f)=0$.
This functional equation coincides with the conjecture of Serre [6]. It is interesting that $L(s ; f, g, h)$ and $L_{3}(s, f)$ always vanish at the center. Concerning special values at other points, we have the following result.

Theorem B. Let f, g and h be normalized Hecke eigenforms of weight k. For an integer j with $0 \leq j \leq(k / 2)-2$, we have

$$
\pi^{5-5 k+4 j} L(2 k-2-j ; f, g, h) /\left(\langle f, f\rangle_{k}\langle g, g\rangle_{k}\langle h, h\rangle_{k}\right) \in \boldsymbol{Q}(f, g, h)
$$

We sketch the proof of Theorem A. The key idea different from Garret [3] is the use of vector valued Klingen type Eisenstein series of degree two in stead of Siegel's Eisenstein series of degree three. The corollary immediately follows from the relation of $L_{3}(s, f)$ and $L(s ; f, f, f)$.

Let St be the standard representation of $G L(2, C)$. Let $q>4$ and $r \geq 0$ be even integers. We realize representation $\operatorname{det}^{q} \otimes \operatorname{Sym}^{r} \mathrm{St}$ on \boldsymbol{C}^{r+1} as follows :

$$
\left(\operatorname{det}^{q} \otimes \operatorname{Sym}^{r} \operatorname{St}\right)\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)\binom{x}{y}_{r}=(a d-b c)^{q}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{x}{y}\right)_{r}
$$

where $\binom{x}{y}_{r}={ }^{t}\left(x^{r}, x^{r-1} y, \cdots, y^{r}\right)$. For an integer j with $0 \leq j \leq r$, we put v_{j} $={ }^{t}(0, \cdots, 0,1,0, \cdots, 0)$ where 1 lies in the $(j+1)$-th column. This is compatible to the definition of v_{0} in Arakawa [1, (0.2)]. We use $\left\{v_{j} \mid 0 \leq j \leq r\right\}$ as a base of the representation space C^{r+1}. $\operatorname{Set}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)^{*}=a$. We define $\Gamma_{2,1}$ as the subgroup of Γ_{2} consisting the elements whose entries in the first three columns and the last row are zero. For $s \in C$ and $f \in S_{q+r}\left(\Gamma_{1}\right)$, we define (vector valued non-holomorphic) Klingen type Eisenstein series attached to f by

$$
[f]_{r}(Z, s)=\sum_{M \in \Gamma_{2}, 1 \Gamma_{2}}\left(\frac{\operatorname{det}(\operatorname{Im} M\langle Z\rangle)}{\operatorname{Im} M\langle Z\rangle^{*}}\right)^{s} f\left(M\langle Z\rangle^{*}\right)\left(\operatorname{det}^{q} \otimes \operatorname{Sym}^{r} \operatorname{St}\right)\left(J(M, Z)^{-1}\right) v_{0}
$$

where $M\langle Z\rangle=(A Z+B)(C Z+D)^{-1}$ and $J(M, Z)=C Z+D$ for $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right) \in \Gamma_{n}$ and $Z \in H_{n}$. We put $[f]_{r}(Z)=[f]_{r}(Z, 0)$. By a method similar to Arakawa [1, Proposition 1.2], we see that $[f]_{r}(Z, s)$ converges absolutely if $\operatorname{Re}(q+2 s)$ >4. Using a suitable differential operator, we generalize the result of Böcherer [2] as follows :

Proposition. Let q, r and f be as above. Put

$$
K(s, f)=\pi^{-3 s} 2^{-2 s} \frac{\Gamma_{3}\left(s+\frac{q+r}{2}\right) \Gamma(s) \Gamma(2 s-1)}{\Gamma_{3}(s)\left(s+\frac{q+r}{2}-1\right)} L_{2}(2 s-2+q+r, f)
$$

and

$$
\boldsymbol{E}_{r}(Z, s, f)=\prod_{j=1}^{r / 2}(s-j) K(s+(q / 2), f)[f]_{r}(Z, s)
$$

where $\Gamma_{3}(s)=\prod_{j=0}^{2} \Gamma(s-(j / 2))$ and $L_{2}(s, f)$ is the second L-function of f. Then, $[f]_{r}(Z, s)$ meromorphically extends to the whole s-plane and satisfies the functional equation

$$
\boldsymbol{E}_{r}(Z, s, f)=\boldsymbol{E}_{r}(Z, 2-q-s, f) .
$$

Let $r=2 k-l-m$. Let $F_{r, k-l}(z, w, s, f)$ be the v_{k-l}-component of the $[f]_{r}\left(\left(\begin{array}{cc}z & 0 \\ 0 & w\end{array}\right), s\right)$. After some computations, we have
(2) $\left\langle\left\langle F_{r, k-l}(z, w, s, f), g(z)\right\rangle_{l}, h(w)\right\rangle_{m}=2(4 \pi)^{2-s-l-m}$

$$
\times \frac{\Gamma(s+l+m-2) \Gamma(s+l-1) \Gamma(s+m-1)}{\Gamma(2 s+l+m-2)} \cdot \frac{L(s+l+m-2 ; f, g, h)}{L_{2}(2 s+l+m-2, f)} .
$$

Combining (2) with Proposition, we obtain Theorem A.
Remark. The form of (2) at $s=0$ gives affirmative support to the conjecture in $[4, \S 4]$. When $r=0$ or 2 , it holds $\boldsymbol{Q}\left([f]_{r}\right)=\boldsymbol{Q}(f)$ (we use [4, Corollary 2.3] for $r=2$) and the value (1) is effectively computable.

Acknowledgement. The author would like to thank Prof. N. Kurokawa and Prof. S. Mizumoto for encouragement and suggestion.

References

[1] T. Arakawa: Vector valued Siegel's modular forms of degree two and the associated Andrianov L-functions. Manuscripta Math., 44, 155-185 (1983).
[2] S. Böcherer: Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe. J. Reine Angew. Math., 362, 146-168 (1985).
[3] P. B. Garrett: Decomposition of Eisenstein series: Rankin triple products (to appear in Ann. of Math.).
[4] T. Satoh: On certain vector valued Siegel modular forms of degree two. Math. Ann., 274, 335-352 (1986).
[5] -: Some remarks on triple L-functions (preprint) (1986).
[6] J.-P. Serre: Une interprétation des congruences relatives à la fonction τ de Ramanujan. Séminaire Delange-Pisot-Poitou, 1967-68, Exp. 14 (February 1968).

