109. Isotropic Submanifolds in a Euclidean Space

By Takehiro Itoh

Institute of Mathematics, Tsukuba University

(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1986)

The Gauss map of a submanifold M in a Euclidean *n*-space E^n is the map which is obtained by the parallel displacement of the tangent plane of M in E^n . It is well known that the image of an *m*-dimensional submanifold in E^n by the Gauss map lies in the Grassmann manifold G(m, n-m). The Gauss map is useful for the study of submanifolds in E^n .

In the present paper we will discuss isotropic submanifolds in E^n with conformal Gauss map and prove the following

Theorem. Let M be an m-dimensional Riemannian manifold isotropically immersed in E^n . If the Gauss map Γ is conformal and the image $\Gamma(M)$ is totally umbilical in G(m, n-m), then M is a minimal and isotropic submanifold in a hypersphere S^{n-1} of E^n with the parallel second fundamental form.

We well know that minimal isotropic submanifolds in a sphere with the parallel second fundamental form are classified in [5].

§1. Preliminaries. In the present paper we use the notations introduced in [3] and [4]. Let M be an m-dimensional Riemannian manifold immersed in E^n through the isometric immersion ι . In each neighborhood $V \subset M, M$ is given by differentiable functions

(1.1) $x^{A} = x^{A}(y^{1}, y^{2}, \cdots, y^{m}),$

where x^{A} (A=1, 2, ..., n) are rectangular coordinates of E^{n} and y^{i} (i=1, 2, ..., m) local coordinates of M in V. We define B_{i}^{A} by $B_{i}^{A}=\partial x^{A}/\partial y^{i}$. The tangent plane $\iota(M_{p}), p \in M$, of ιM may be considered as a point $\Gamma(p)$ of G(m, n-m) by the parallel displacement in E^{n} , and so we get naturally a mapping $\Gamma: M \to G(m, n-m)$ which is called the Gauss map associated with the immersion ι and $\Gamma(M)$ the Gauss image of M. In the present paper, we always assume that the Gauss map is regular.

Now, we assume that $V \subset M$ is a neighborhood of a fixed point $p \in M$ whose local coordinates satisfy $y^i = 0$, $i = 1, \dots, m$. Let (e_i, e_α) be a fixed orthonormal frame of E^n such that e_i are vectors of $\iota(M_p)$ and e_α are normal to $\iota(M_p)$. For each point $q \in V$, let (f_i, f_α) be an orthonormal frame of E^n where f_i are vectors of $\iota(M_q)$ and f_α are normal to $\iota(M_q)$ such that, in V, (f_i, f_α) is a differentiable frame satisfying $\langle f_i, e_j \rangle = \langle f_j, e_i \rangle$, $\langle f_\alpha, e_\beta \rangle = \langle f_\beta, e_\alpha \rangle$ and $f_i(0) = e_i$, $f_\alpha(0) = e_\beta$. Denoting f_i^A the components of the vector f_i , we may put $f_i^A = \sum_k \iota_i^k B_k^k$. The matrix (ι_j^i) satisfies $\sum \iota_i^l \iota_j^k g_{lk} = \delta_{ij}, g_{ij} = \sum B_i^A B_j^A$, where g_{ij} are the components of the first fundamental form g of M. Then we have $\sum \iota_i^l \iota_j^r = g^{ij}$ where $\sum g^{ik} g_{kj} = \delta_j^i$. The components of the second No. 10]

(1.2)

fundamental form are

 $h_{ij}^{A} = \nabla_{i}B_{j}^{A} = \partial_{i}B_{j}^{A} - \sum_{i} \{ k_{i} \} B_{k}^{A},$

where $\{{}_{i}{}^{k}{}_{j}\}$ are the Christoffel symbols derived from g_{ij} and V is the covariant differentiation with respect to the metric g. For each point $q \in V$, the image $\Gamma(q)$ is the *m*-plane spanned by f_1, \dots, f_m . The distance $d\sigma$ between two points $\Gamma(q)$ and $\Gamma(q+dq)$ is given by

$$(d\sigma)^2 = \sum \langle df_i, f_{\alpha} \rangle^2 = \sum g^{ij} h^A_{il} h^A_{jk} dy^l dy^k,$$

where dy^i are differences between the local coordinates of the points q + dqand q. From this formula, we see that the Riemannian metric G of $\Gamma(M)$ is given by

(1.3)

 $G_{ij} = \sum g^{kl} h^A_{ik} h^A_{jl}$.

Since Γ is assumed to be regular, M admits two metric g and G, one induced from ι and the other induced from its Gauss map Γ . The Gauss map is said to be *conformal* if $G = e^{2\rho}g$ for some differentiable function ρ on M. If the above function ρ is constant on M, then the Gauss map is said to be homothetic.

Let Π be a point of G(m, n-m). As stated in [4], we choose a system of local coordinates (ξ_{ia}) in a suitable open neighborhood U of Π , where the indices run as follows: $i=1,2,\dots,m$; $\alpha=m+1,\dots,n$. Then, the components of the second fundamental form of $(\Gamma(M), G)$ in $(G(m, n-m), \tilde{g})$ are given by, in $\Gamma(V) \subset U$,

 $\tilde{h}_{jk}^{i\alpha} = \partial^2 \xi_{i\alpha} / \partial y^j \partial y^k - {}^{G} \{ {}^{I}_{jk} \} \partial \xi_{i\alpha} / \partial y^l + \{ {}^{I}_{l\beta}{}^{i\alpha}{}_{h\gamma} \} (\partial \xi_{l\beta} / \partial y^j) (\partial \xi_{h\gamma} / \partial y^k),$ where ${}^{G}{{l \atop j,k}}$ is the Christoffel symbols of $(\Gamma(M), G)$ and ${{l \atop {l \atop j,k}}}$ is the ones of $(G(m, n-m), \tilde{g}).$

The immersion is said to be λ -isotropic if the second fundamental form satisfies (see [1]).

 $\sum h_{ij}^{A}h_{kl}^{A} + \sum h_{ik}^{A}h_{jl}^{A} + \sum h_{il}^{A}h_{jk}^{A} = \lambda^{2}(g_{ij}g_{kl} + g_{ik}g_{jl} + g_{il}g_{jk}),$ (1.4)where λ is a differentiable function on *M*.

§ 2. The proof of Theorem. At first, we will prove the following

Proposition 1. Let M be an m-dimensional Riemannian submanifold which is λ -isotropically immersed in E^n . If $m \geq 3$ and Gauss map Γ is conformal, then Γ is homothetic.

Proof. From (1.4), we have

(2.1)
$$m \sum h^{A} h_{ij}^{A} + 2 \sum g^{kl} h_{ik}^{A} h_{lj}^{A} = (m+2)\lambda^{2} g_{ij}, \quad \text{where } h^{A} = \frac{1}{m} \sum g^{kl} h_{kl}^{A}.$$

On the other hand, the Ricci curvature K_{ij} is given by (2.2) $K_{ij} = m \sum_{i} h^{A} h^{A}_{ij} - \sum_{i} h^{A}_{ik} h^{A}_{ij} g^{kl}$.

(2.2)
$$K_{ij} = m \sum h^{A} h_{ij}^{A} - \sum h_{ik}^{A} h_{lj}^{A}$$

It follows from (2.1) and (2.2) that we have

(2.3)
$$2K_{ij} = 3m \sum h^A h^A_{ij} - (m+2)\lambda^2 g_{ij},$$

(2.4)
$$\sum h^{A}h_{ij}^{A} = \frac{1}{3m} \{ (m+2)\lambda^{2}g_{ij} + 2K_{ij} \},$$

(2.5)
$$G_{ij} = \sum g^{kl} h^A_{ik} h^A_{lj} = \frac{1}{3} \{ (m+2) \lambda^2 g_{ij} - K_{ij} \},$$

which imply the following

Lemma 1. The Gauss map Γ is conformal if and only if M is Einsteinian or it is pseudo-umbilical.

Then, since $m \geq 3$, the above results imply that M is Einsteinian and

(2.6)
$$G_{ij} = \frac{1}{3} \left\{ (m+2)\lambda^2 - \frac{K}{m} \right\} g_{ij}, \qquad K = \text{constant},$$

where K is the scalar curvature of M.

Now, let $G_{ij} = \rho g_{ij}$, where ρ is a differentiable function on M. Since $G_{ij} = \sum g^{ki} h_{ik}^A h_{jl}^A$, we have

$$\sum g^{kl} (\nabla_r h^A_{jk}) h^A_{il} + \sum g^{kl} (\nabla_r h^A_{il}) h^A_{jk} = \rho_r g_{ij},$$

which implies

(2.7)
$$\sum g^{kl} (\nabla_k h^A) h^A_{il} + \sum g^{kl} (\nabla_l h^A_{ir}) h^A_{jk} g^{jr} = \rho_i,$$

(2.8)
$$\sum g^{ij} g^{kl} (\mathcal{V}_r h^A_{jk}) h^A_{il} = \frac{1}{2} \rho_r g^{ij} g_{ij} = (m/2) \rho_r.$$

It follows from (2.7) and (2.8) that

(2.9) $\sum g^{kl} (\nabla_k h^A) h^A_{il} = -((m-2)/2) \rho_i.$

On the other hand, from (1.4) we have

(2.10) $\sum (\nabla_i h^A) h_{ij}^A + 2 \nabla_i G_{ij} = c_i g_{ij}, \quad \text{where } c = (m+2)\lambda^2.$

Since K is constant, (2.6) implies $V_i G_{ij} = (c_i/3)g_{ij}$. Then from (2.10) we have

$$\sum (\nabla_i h^A) h^A_{ij} = (c_i/3) g_{ij} = \rho_i g_{ij}, \qquad \text{because of } \rho = \frac{1}{3} \left(c - \frac{K}{m} \right),$$

which implies

(2.11)
$$\sum g^{ij}(\nabla_i h^A)h^A_{ij} = \rho_i.$$

It follows from (2.9) and (2.11) that

$$m\rho_i=0$$
, that is, ρ must be constant on M .

Thus the Gauss map Γ is homothetic.

Q.E.D.

Since the local expression $\xi_{ia} = \xi_{ia}(y)$ of the immersion from M into G(m, n-m) is given by $\xi_{ia} = \langle f_i, e_a \rangle = \sum \gamma_i^j B_j^A e_a^A$, we have

(2.12) $\tilde{B}_{i}^{j\alpha} = (\partial \xi_{j\alpha})/(\partial y^{i}) = \sum \left\{ (\nabla_{i} \gamma_{j}^{k}) B_{k}^{A} + \gamma_{j}^{k} h_{ik}^{A} \right\} e_{\alpha}^{A}.$

Since Γ is homothetic, ${i \atop j} = {}^{a} {i \atop j}$. As stated in [4], we have

(2.13) $\tilde{h}_{jk}^{i\alpha} = \nabla_j \tilde{B}_k^{i\alpha} = \sum \gamma_i^l \sum (\nabla_j h_{kl}^A) e_\alpha^A \quad \text{at } p \in V, \ y^i(p) = 0.$

Now, we must state the following Muto's Theorem 3.5 in [4].

Lemma 2. If the Gauss map Γ is homothetic and the Gauss image $\Gamma(M)$ is totally umbilical in G(m, n-m), then $\Gamma(M)$ is totally geodesic.

By this Lemma 2 and (2.13) we have

 $\sum N^{A}(\nabla_{i}h_{ik}^{A}) = 0$, for every normal vector N to M_{p} ,

that is, the second fundamental form of M is parallel in the normal bundle. Thus, we have proved the following

Proposition 2. Let M be an m-dimensional Riemannian manifold isotropically immersed in E^n , $m \ge 3$. If the Gauss map Γ is conformal and the Gauss image $\Gamma(M)$ is totally umbilical in G(m, n-m), then M is Einsteinian, the Gauss map Γ is homothetic and the second fundamental form is parallel in the normal bundle. No. 10]

By this Proposition and Theorem 4.2 in [4], we see that M is a minimal and isotropic submanifold in a hypersphere S^{n-1} of E^n . In this case, we easily see that the second fundamental form of M in S^{n-1} is parallel in the normal bundle. Therefore, we have proved our main Theorem.

References

- D. Ferus: Immersionen mit paralleler zweiter Fundamentalform Beispiele und Nicht-Beispiele. Munuscripta Math., 12, 153-162 (1974).
- [2] T. Itoh and K. Ogiue: Isotropic immersions and Veronese manifolds. Trans. Amer. Math. Soc., 209, 109-117 (1975).
- [3] T. Itoh: Isotropic minimal submanifolds in a space form (to appear).
- [4] Y. Mutō: Submanifolds of a Euclidean space with homothetic Gauss map. J. Math. Soc. Japan, 32, 531-555 (1980).
- [5] K. Sakamoto: Planar geodesic immersions. Tohoku Math. J., 29, 25-56 (1977).