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The Gauss map of a submanifold M in a Euclidean n-space E is the
map which is obtained by the parallel displacement of the tangent plane of
M in E. It is well known that the image of an m-dimensional submani-
fold in E by the Gauss map lies in the Grassmann manifold G(m, n-m).
The Gauss map is useful for the study of submanifolds in E.

In the present paper we will discuss isotropic submanifolds in E with
conformal Gauss map and prove the ollowing

Theorem. Let M be an m-dimensional Riemannian manifold isotro-
pically immersed in En. If the Gauss map F is conformal and the image
F(M) is totally umbilical in G(m, n-m), then M is a minimal and isotropic
submanifold in a hypersphere Sn-1 of E with the parallel second funda-
mental form.

We well know that minimal isotropic submanitlds in a sphere with
the parallel second fundamental form are classified in [5].

1. Preliminaries. In the present paper we use the notations intro-
duced in [3] and [4]. Let M be an m-dimensional Riemannian manifold
immersed in E through the isometric immersion . In each neighborheod
VcM, M is given by differentiable unctions
(1.1) xA= xA(yl, y2, "’, y),
where x (A 1, 2,..., n) are rectangular coordinates of E and yi (i= 1, 2,
.., m)local coordinates o M in V. We define B by B=3x/3y. The

tangent plane (Mp), p e M, of M may be considered as a point F(p) of
G(m, n-m) by the parallel displacement in En, and so w.e get naturally a
mapping F M-+G(m, n--m) which is called the Gauss map associated with
the immersion and F(M) the Gauss image of M. In the present paper,
we always assume that the Gauss map is regular.

Now, we assume that VcM is a neighborhood of a fixed point p e M
whose local coordinates satisfy y=0, i=1, ..., m. Let (e, e.) be a fixed
orthonormal frame of E such that e are vectors o (M) and e, are normal
to (M). For each point q e V, let (f, f,) be an orthonormal rame of E
where f are vectors o (Mq) and f, are normal to (Mq) such that, in V,
(f, f) is a differentiable frame satisfying (f, e} (f, e}, (f, e}= (f, e}
and f,(0)=e,, f,(0)=%. Denoting f2 the components of the vector f,, we

’,B The matrix (’.) satisfies A amay putf
where g are the components of the first tundamental iorm g of M. Then
we have ’ g where g g=.. The components o the second
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fundamental form are
(1 2) ha ie A j} kij --3iBj--, {i Ba

where {,} are the Christoffel symbols derived from g, and is the co-
variant differentiation with respect to the metric g. For each point q e V,
the image F(q) is the m-plane spanned by fl," ",f. The distance da
between two points F(q) and F(q+dq) is given by

(da)2 (df fa)2 gij A A

where dy are differences between the local coordinates of the points q+dq
and q. From this formula, we see that the Riemannian metric G of F(M)
is given by
(1.3) G, g A

Since F is assumed to be regular, M admits two metric g and G, one
induced from and the other induced from its Gauss map F. The Gauss
map is said to be conformal if G=e,g for some differentiable function p
onM. If the above function p is constant on M, then the Gauss map is
said to be homothetic.

Let H be a point of G(m, n-m). As stated in [4], we choose a system
of local coordinates (,) in a suitable open neighborhood U of H, where the
indices run as follows" i=1,2,..., m; a=m+l,...,n. Then, the com-
ponents of the second fundamental form of (F(M), G) in (G(m, n-m), O)
are given by, in F(V)c U,

h.=,/yy-{*}3$,/y +{ r /Y)(r/Y),
where V{ } is the Christoffel symbols of (F(M), G) and {*} is the ones of
(G(m, n-m), ).

The immersion is said to be 2-isotropic if the second fundamental form
satisfies (see [1]),
(1.4) hA.h, + A A Ah,ht+ h,th 2(g,g+g,g+ g**g ),
where 2 is a differentiable function on M.

2. The proof of Theorem. At first, we will prove the following
Proposition 1. Let M be an m-dimensional Riemannian submanifold

which is 2-isotropically immersed in En. If m3 and Gauss map F is
conformal, then F is homothetic.

Proof. From (1.4), we have

(2 1) m hhA g A A,+2 =(m 2)2g, where ha 1h,h, + , gh.
m

On the other hand, the Ricci curvature K, is given by
(2 2) K,=m h@A* A A

vikVlj

It follows from (2.1) and (2.2) that we have
(2.3) 2K,=3m hahA* (m+2)2g,,

(2.4) hhA {(m+2)2g,+2K,},

(2.5)

which imply the following
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Lemma 1. The Gauss map F is conformal if and only if M is
Einsteinian or it is pseudo-umbilical.

Then, since m>_3, the above results imply that M is Einsteinian and

(2.6) G=- (m+2)--m g, K=constant,

where K is the scalar curvature of M.
Now, let G--pg, where p is a differentiable function on M. Since

’’2, we have
kl A A ggl A Ag (Fh)h+

which implies
A A jr(2.7) g"(F,h)h+ g (Fh,)hg ,

1 :(m/2)p.(2.s) g.g"(Fh.)h5=g g

It ollows from (2.7) and (2.8) that
(2.9) g"(Fh)h5 ((m-2)/2)p,.
On the other hand, from (1.4) we have
(2.10) (Fh )h+2FG:cg, where c:(m+2)2.
Since K is constant, (2.6) implies FG:(c/3)g. Then from (2.10) we
have

(gh)h=(c/3)g:pg, because of p= c

which implies
A A(2.11) g(Vh )h

It ollws from (2.9) and (2.11) that
mp=0, that is, p must be constant on M.

Thus the Gauss map F is homothetic. Q.E.D.
Since the lcal expression .=.(y) of the immersion rom M into

G(m, n-m) is given by=(f, e.)= YBe., we have
k A A(2.12) B"=(3.)/(3y)=

Since F is homothetic, {}=(). As stated in [4], we have
(2 13) -": -"h VB (Vh)e. at p e V, y(p)=0.

Now, we must state the following Muto’s Theorem 3.5 in [4].

Lemma 2. If the Gauss map F is homothetic and the Gauss image
F(M) is totally umbilical in G(m, n-m), then F(M) is totally geodesic.

By this Lemma 2 and (2.13) we have
N(Vh):0, or every normal vector N to

that is, the second undamental form of M is parallel in the normal bundle.
Thus, we have proved the ollowing

Proposition 2. Let M be an m-dimensional Riemannian manifold
isotropically immersed in E, m3. If the Gauss map F is conformal and
the Gauss image F(M) is totally umbilical in G(m,n-m), then M is
Einsteinian, the Gauss map F is homothetic and the second fundamental
form is parallel in the normal bundle.
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By this Proposition and Theorem 4.2 in [4], we see that M is a minimal
and isotropic submanifold in a hypersphere Sn-1 of En. In this case, we
easily see that the second fundamental form of M in S- is parallel in the
normal bundle. Therefore, we have proved our main Theorem.
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