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The purpose of this note is to announce our recent results on quater-
nionic Kihler manifolds (see Salamon [5] for definition of quaternionic
Kihler manifolds). Let M be a 4n-dimensional connected quaternionic
Kihler manifold with the corresponding twistor space »:Z—M (cf. [5)).
Furthermore, let H be the skew field of quaternions. Then the Sp(n)-Sp(1)-
module A2H™" is a direct sum N/®N/®L, of its irreducible submodules N,
N7, L,, where N} (resp. L,) is the submodule fixed by Sp(n) (resp. Sp(1)) and
for n=1, we have N} ={0}. Hence, the vector bundle A\*T*M is written
as a direct sum A;PA/®B, of its holonomy-invariant subbundles in such a
way that A;, A}, B, correspond to N}, N/, L,, respectively. Now, let V be
a vector bundle over M.

Definition 1. A connection for V is called an Aj-connection (resp. B,
connection) if the corresponding curvature is an End (V)-valued Aj-form
(resp. B,-form).

First, we have:

Theorem A (cf.[3]). All Ai-connections and also all B,-connections are
Yang-Mills connections.

Let p:Sp(n)—>GL@2n; C) be the standard representation of Sp(n).
Recall that Sp(1)={h € H||h|=1}. Furthermore, let K’ (resp. K) be the
C-vector space C** (resp. C* (=H)) endowed with the Sp(n)-action (resp.
Sp(1)-action) defined by

Spm) X C** 3 (g, f)—>p(9)- f € C*,

(resp. Sp(V)X H> (u, )—>f-u'e H).
Then the complexification H*® 5 C of the Sp(n) - Sp(1)-module H" is naturally
identified with K'®;K”. Let r be an integer with r=2. Since the sub-
module A\"'K'®,S’K” of the Sp(n)-Sp(l)-module A" (K'QK") (=" (H"
®zC)) is just N? (=N,RQ;C) for some suitable Sp(n)-Sp(1)-module N,, we
have a natural decomposition A"H"=N,®L, for some complementary
Sp(n)-Sp(1)-module L, of N, in A'H" (cf. [8]). Therefore, the vector
bundle A’T*M is expressed as a direct sum A,®B, of subbundles A4,.B,
corresponding to N,.L,. respectively. We denote by =" : A\"T*M (=A,&B,)
—A, the natural projection to the first factor. Then from a theorem of
Salamon [6], one easily obtains the following :

Theorem B (cf. [8]). Assume that V is a B,-connection on V. Then
the following is an elliptic complex :
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0—>EV) > EVRT* M- 8(VRA,)

o4y s oA, )0,

where d, :=({1d®='*?) o d’, and for every vector bundle W on M, we denote
by E(W) the sheaf of germs of C=-sections of W.

Now, let ' be a B,connection on V such that the corresponding
holonomy group can be reduced to (a subgroup of) a compact semisimple
Lie group G. Then the frame bundle P of V can be regarded as a principal
G-bundle. Put G;:=PX,G and g=PX 448, where §: G—Aut(G) is the
group conjugation and Ad: G—GL(g) is the adjoint representation of G.
A global smooth section of G, is called a gauge transformation of P and
let (% be the modult space of the B,-connections on V with holonomy groups
in G, where “moduli space” means the space of all such connections modulo
gauge transformations of P (see [3] for more details). Then we have the
following analogue of a result of Atiyah, Hitchin and Singer [1]:

Theorem C (cf. [8]). IfV is an irreducible connection, then the space
of infinitesimal deformations of B,-connections at V, that is, the tangent
space of M atV is a linear subspace of the first cohomology group of the
elliptic complex :

0—>E@) L8 RT*M)- 5 E(g,@4)
4 ’ 4
& o405 I o ,@4,)—0,
where V' is the connection on g, naturally induced by V and furthermore,
we put d; :={d®z**") o d",

For our quaternionic Kéhler manifold M, we now define the following :

Definition 2. (i) A pair (F,D;) of a vector bundle E over M and
a B,-connection D on F is called a Hermition pair on M if D, is a Hermitian
connection on E.

(ii) A pair (F,D;) of a holomorphic vector bundle F over Z and a
Hermitian (1, 0)-connection D, with Hermitian metric 2(, ) on F is called
an excellent pair on Z if the following conditions are satisfied :

(a) F is a flat Hermitian vector bundle when restricted to each fibre
of p: Z—M. (Hence the real structure z: Z—Z (cf. Nitta and Takeuchi [4]
naturally lifts to a bundle automorphism ¢’ : F—F.)

(b) Let ¢: F—F* be the bundle map defined fibrewise by

F,> f—a(f) e F%, (ze 2),
where o(f)(9) :=h(f,7'(f)) for each g € F,,. Then ¢ is an antiholomorphic
bundle automorphism.

We then have the following generalization of a result of Atiyah, Hitchin
and Singer [1] (see also Salamon [6], Berard-Bergery and Ochiai [2]) :

Theorem D (cf. [8]). Let 4 (resp. H) be the set of all Hermitian
pairs (resp. all excellent pairs) on M (resp. Z). Then

> (E,D)—>*E, p*D;) e I
defines a bijective correspondence : H~ 9.
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Corollary E (cf. [8]). Let (F,D;) be an excellent pair on Z. If M has
positive scalar curvature, then F with Dy is a Ricci-flat Einstein Hermition
vector bundle over Z.

In conclusion, I would like to express my sincere gratitude to
Professors H. Ozeki, M. Takeuchi, I. Enoki and T. Mabuchi for suggestion
and constant encouragement.
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