8. Connections for Vector Bundles over Quaternionic Kähler Manifolds

By Takashi Nitta
Department of Mathematics, Osaka University
(Communicated by Kunihiko Kodaira, m. J. A., Jan. 12, 1987)

The purpose of this note is to announce our recent results on quaternionic Kähler manifolds (see Salamon [5] for definition of quaternionic Kähler manifolds). Let M be a $4 n$-dimensional connected quaternionic Kähler manifold with the corresponding twistor space $p: Z \rightarrow M$ (cf. [5]). Furthermore, let \boldsymbol{H} be the skew field of quaternions. Then the $S p(n) \cdot S p(1)-$ module $\wedge^{2} \boldsymbol{H}^{n}$ is a direct sum $N_{2}^{\prime} \oplus N_{2}^{\prime \prime} \oplus L_{2}$ of its irreducible submodules N_{2}^{\prime}, $N_{2}^{\prime \prime}, L_{2}$, where $N_{2}^{\prime}\left(\right.$ resp. L_{2}) is the submodule fixed by $S p(n)$ (resp. $S p(1)$) and for $n=1$, we have $N_{2}^{\prime \prime}=\{0\}$. Hence, the vector bundle $\wedge^{2} T^{*} M$ is written as a direct sum $A_{2}^{\prime} \oplus A_{2}^{\prime \prime} \oplus B_{2}$ of its holonomy-invariant subbundles in such a way that $A_{2}^{\prime}, A_{2}^{\prime \prime}, B_{2}$ correspond to $N_{2}^{\prime}, N_{2}^{\prime \prime}, L_{2}$, respectively. Now, let V be a vector bundle over M.

Definition 1. A connection for V is called an A_{2}^{\prime}-connection (resp. B_{2-} connection) if the corresponding curvature is an End (V)-valued A_{2}^{\prime}-form (resp. B_{2}-form).

First, we have:
Theorem A (cf. [3]). All A_{2}^{\prime}-connections and also all B_{2}-connections are Yang-Mills connections.

Let $\rho: S p(n) \rightarrow G L(2 n ; C)$ be the standard representation of $S p(n)$. Recall that $S p(1)=\{h \in H| | h \mid=1\}$. Furthermore, let K^{\prime} (resp. $K^{\prime \prime}$) be the \boldsymbol{C}-vector space $\boldsymbol{C}^{2 n}$ (resp. $\boldsymbol{C}^{2}(=\boldsymbol{H})$) endowed with the $S p(n)$-action (resp. $S p(1)$-action) defined by

$$
\begin{aligned}
& S p(n) \times C^{2 n} \ni(g, f) \longrightarrow \rho(g) \cdot f \in C^{2 n}, \\
& \left(\text { resp. } S p(1) \times \boldsymbol{H} \ni\left(u, f^{\prime}\right) \longrightarrow f \cdot u^{-1} \in \boldsymbol{H}\right) .
\end{aligned}
$$

Then the complexification $\boldsymbol{H}^{n} \otimes_{R} C$ of the $S p(n) \cdot S p(1)$-module \boldsymbol{H}^{n} is naturally identified with $K^{\prime} \otimes_{C} K^{\prime \prime}$. Let r be an integer with $r \geqq 2$. Since the submodule $\wedge^{r} K^{\prime} \otimes_{c} S^{r} K^{\prime \prime}$ of the $S p(n) \cdot S p(1)$-module $\wedge^{r}\left(K^{\prime} \otimes_{c} K^{\prime \prime}\right)\left(=\wedge^{r}\left(H^{n}\right.\right.$ $\left.\otimes_{R} C\right)$) is just $N_{r}^{c}\left(=N_{r} \otimes_{R} C\right)$ for some suitable $S p(n) \cdot S p(1)$-module N_{r}, we have a natural decomposition $\wedge^{r} \boldsymbol{H}^{n}=N_{r} \oplus L_{r}$ for some complementary $S p(n) \cdot S p(1)$-module L_{r} of N_{r} in $\wedge^{r} H^{n}$ (cf. [3]). Therefore, the vector bundle $\bigwedge^{r} T^{*} M$ is expressed as a direct sum $A_{r} \oplus B_{r}$ of subbundles $A_{r} B_{r}$ corresponding to $N_{r} L_{r}$, respectively. We denote by $\pi^{r}: \wedge^{r} T^{*} M\left(=A_{r} \oplus B_{r}\right)$ $\rightarrow A_{r}$ the natural projection to the first factor. Then from a theorem of Salamon [6], one easily obtains the following :

Theorem B (cf. [3]). Assume that \bar{V} is a B_{2}-connection on V. Then the following is an elliptic complex:

where $d_{i}:=\left(\mathrm{id} \otimes \pi^{i+1}\right) \circ d^{\nabla}$, and for every vector bundle W on M, we denote by $\mathcal{E}(W)$ the sheaf of germs of C^{∞}-sections of W.

Now, let V be a B_{2}-connection on V such that the corresponding holonomy group can be reduced to (a subgroup of) a compact semisimple Lie group G. Then the frame bundle P of V can be regarded as a principal G-bundle. Put $G_{P}:=P \times_{\theta} G$ and $g_{P}=P \times_{A d} \mathfrak{g}$, where $\theta: G \rightarrow$ Aut (G) is the group conjugation and $\operatorname{Ad}: G \rightarrow G L(\mathrm{~g})$ is the adjoint representation of G. A global smooth section of G_{P} is called a gauge transformation of P and let \mathcal{M} be the moduli space of the B_{2}-connections on V with holonomy groups in G, where "moduli space" means the space of all such connections modulo gauge transformations of P (see [3] for more details). Then we have the following analogue of a result of Atiyah, Hitchin and Singer [1]:

Theorem C (cf. [3]). If \bar{D} is an irreducible connection, then the space of infinitesimal deformations of B_{2}-connections at ∇, that is, the tangent space of \mathscr{M} at $\bar{\nabla}$ is a linear subspace of the first cohomology group of the elliptic complex:

$$
\begin{aligned}
& 0 \longrightarrow \mathcal{C}\left(\mathrm{~g}_{P}\right) \xrightarrow{\nabla^{\prime}} \mathcal{E}\left(\mathrm{g}_{P} \otimes T^{*} M\right) \xrightarrow{d_{1}^{\prime}} \mathcal{E}\left(\mathrm{g}_{P} \otimes A_{2}\right) \\
& \xrightarrow{d_{2}^{\prime}} \mathcal{E}\left(\mathrm{g}_{P} \otimes A_{3}\right) \xrightarrow{d_{3}^{\prime}} \cdots \xrightarrow{d_{2 n-1}^{\prime}} \mathcal{E}\left(\mathrm{g}_{P} \otimes A_{2 n}\right) \longrightarrow 0,
\end{aligned}
$$

where ∇^{\prime} is the connection on \mathfrak{g}_{P} naturally induced by ∇ and furthermore, we put $d_{i}^{\prime}:=\left(\mathrm{id} \otimes \pi^{i+1}\right) \circ d^{{ }^{\prime \prime}}$.

For our quaternionic Kähler manifold M, we now define the following :
Definition 2. (i) A pair (E, D_{E}) of a vector bundle E over M and a B_{2}-connection D_{E} on E is called a Hermitian pair on M if D_{E} is a Hermitian connection on E.
(ii) A pair (F, D_{F}) of a holomorphic vector bundle F over Z and a Hermitian (1,0)-connection D_{F} with Hermitian metric $h($,$) on F$ is called an excellent pair on Z if the following conditions are satisfied :
(a) F is a flat Hermitian vector bundle when restricted to each fibre of $p: Z \rightarrow M$. (Hence the real structure $\tau: Z \rightarrow Z$ (cf. Nitta and Takeuchi [4] naturally lifts to a bundle automorphism $\tau^{\prime}: F \rightarrow F$.)
(b) Let $\sigma: F \rightarrow F^{*}$ be the bundle map defined fibrewise by

$$
F_{z} \ni f \longmapsto \longmapsto(f) \in F_{\tau(z)}^{*} \quad(z \in Z),
$$

where $\sigma(f)(g):=h\left(f, \tau^{\prime}(f)\right)$ for each $g \in F_{\tau(z)}$. Then σ is an antiholomorphic bundle automorphism.

We then have the following generalization of a result of Atiyah, Hitchin and Singer [1] (see also Salamon [6], Berard-Bergery and Ochiai [2]) :

Theorem D (cf. [3]). Let \mathscr{H} (resp. $\widetilde{\mathcal{H}) ~ b e ~ t h e ~ s e t ~ o f ~ a l l ~ H e r m i t i a n ~}$ pairs (resp. all excellent pairs) on M (resp. Z). Then

$$
\mathscr{H} \ni\left(E, D_{E}\right) \longmapsto\left(p^{*} E, p^{*} D_{E}\right) \in \widetilde{\mathscr{G}}
$$

defines a bijective correspondence: $\mathscr{H} \simeq \widetilde{\mathcal{H}}$.

Corollary E (cf. [3]). Let $\left(F, D_{F}\right)$ be an excellent pair on Z. If M has positive scalar curvature, then F with D_{F} is a Ricci-flat Einstein Hermitian vector bundle over Z.

In conclusion, I would like to express my sincere gratitude to Professors H. Ozeki, M. Takeuchi, I. Enoki and T. Mabuchi for suggestion and constant encouragement.

References

[1] M. F. Atiyah, N. J. Hitchin and I. M. Singer: Self-duality in four-dimensional Riemannian geometry. Proc. Roy. Soc. London, Ser. A, 362, 425-461 (1978).
[2] L. Berard Bergery and T. Ochiai: On some generalizations of the construction of twistor spaces. Global Riemannian Geometry (Proc. Symp. Duhram), Ellis Horwood, Chichester, pp. 52-59 (1982).
[3] T. Nitta: Vector bundles over quaternionic Kähler manifolds (to appear).
[4] T. Nitta and M. Takeuchi: Contact structures on twistor spaces (to appear in Japanese Journal).
[5] S. M. Salamon: Quaternionic Kähler manifolds. Inv. Math., 67, 143-171 (1982). [6] -: Quaternionic manifolds. Symposia Mathematica, 26, 139-151 (1982).

