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Introduction. For a given ’Hamiltonian’ described by even and odd
Grassmann variables (called super Hamiltonian), we ’quantize’ it by apply-
ing the method of the product integrals. Namely, introducing the super-
symmetric version of the oscillatory integrals (super oscillatory integrals,
for short) whose phase and amplitude functions are defined by a super
Hamiltonian, we prove the convergence of its iterated integrals under
suitable conditions by a similar procedure in Kitada [2]. Detailed proof
will appear elsewhere.

Result. Let V be a vector space over R of dimension N with a
positive definite inner product whose orthonormal basis is given by
where N--21. We denote by Cl(V2v) the free algebra over C generated by
1 and {e}= with relations ee+ee=-2, for ],k--I, 2, N. We
prepare another vector space V+2 over C of dimension N+2 with a posi-
tive definite inner product whose orthonormal basis is given by {e}___.
Assuming above, relations hold for ], k= -1, 0, 1, ..., N, we define Cl(V+)
analogously as above. In Cl(Vv+.), putting a=(1/)(e2+J--L-e2_) and
e=(1/)(e.-,/--L-e._) for ]=0, 1, ...,1, we get easily the following
Grassmann relations aa+aa=0, ee+e=0 and ae+ea=2/-1
for ], k=0, 1, ..., 1. We denote by h(/+l) the set of free algebra over C
generated by 1 and { }.=0. Let S be a set of elements of (l+ 1) represented
as =t,:a. Any element e S is called a spinor. We consider a
spin field q(q) on Rn, that is, + is a section of a bundle z" q R ) S--->R
represented as +(q)= ,tt..ee (q)a, for q e Rn. Denote by F(q) a set of
smooth sections on q with compact support. For + e/(3), we put
Y,,l:on ]1+ l]n). We denote by L(q)(=H) the completion of /.o(q) with
respect to 11" 11. Defining a super-space R,*+ as a set of points with even
coordinates x, x., ..., x and odd coordinates O0, 0,..., , we introduce
function spaces over R,+ as same as those over R. We define a mapping

#" F’(,S)--C,(R’+) by (#q)(x, t) (=f(x, t))=,: q(x)a, where +,(x)
is the Grassmann extension of q(q). Conversely, for any f(x,
Ce(R’’*+I), we put (bf)(q)=f(q, a0, .-., a). As b=Id and b#=Id, we have
a natural identification between/o(3) (resp. L()) and C,(R’+) (resp.
L(R ’/)). Now, we may define an action p of Cl(V) on q as

p(e2)=(1/2)(ao+/-&-],eo 1 )(a+/-1,e2 J )
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and
p(e_,)=(1/2)(ao+V- 1.0 J )(a-/- 1.. J ) or ]=1, 2, ..., I.

Here means the complex conjugation of the coefficients in and J stands
or the inner product on viewed as an exterior algebra. Moreover, above
defined action extended as a representation p of Cl(V) on may be ex-
pressed as even differential operators on R,+ e

p(e_)b
2

Concerning the differential and the integral calculus on superspace, see, or
example, Vladimirov and Volovich [3, 4].

Now, consider a super Hamiltonian H(x; , ; ) defined on T*Rn’+

with the following conditions" (A.1) H(x;, O; )e C:(T*R,+), (A.2)
H(x ;, 0;0) is a smeoth real valued unction on T*(R). (A.3) For any
multi-indices a, b, a and fl with [al+[fl[+]a]+b]2, there exists a positive
constant C,,, such that

3H(x , 0; 0)[< C,,, .
We denote a solution of the ollowing equations as (x(t) (t), O(t) u(t))

d -g
dt dt dt dt

satisfying the initial condition (x(s) (s), (s) (s))=(y , w p) e T*Rn’-’.
Here means the left derivative with respect to odd variables. If it is
necessary to make explicit the dependence on the initial data, we rewrite
x(t) as x(t, s, y , w p) etc. Then for sufficiently small0 and fixed (, p),
a mapping

(y, w)(x(t, s, y V, w p), O(t, s, y V, w p))
is a global diffeomorphism rom R’+ to RnTM for t--s[. From this,
we may define a mapping from R’+ to Rn’+ by

(x, O)o(y(t, s, x V, O; p), (t, s, x V, p)).
Putting (V]Y} =VY and (pw} r=o pW, we introduce a Lagrangean
function as

L(x; , 0 ) (]H(x , ; )} +(]H(x; , 0; )} -H(x; , ; ).
Defining

g(t,

we introduce

(t, s, x , 0 =)= g(t, s, y(t, s, x , 0 ) , (t, s, x , 0 =) ).
For It--s], we consider the following transformation acting on C(R", )

N(t, )(z, 0)=(2)-/ ex (i(t, , , O; ))(f)(,
Rn,g+l

where Fu is the Fourier transformation on R’+ given by

):(2)-/,+ exp i( y} i(z w})u(y, w)dyd.Fu(,
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Combining these, we define a linear operator acting on F() by E(t)+(q)
=bE(t)(q), which may be extended to a bounded linear operator acting
on H.

Fix T0. Let [s, t] be an arbitrary given interval in (--T, T) and let
it be decomposed as z/" s-- t0t. t-- t. Putting (z])--max__ [t--
t_[, we introduce the product of integral operators E(z/[ t, s) attached to
the above subdivision by E(z] t, s)=E(t, t_). E(t, s).

Theorem. Under assumptions (A.1)-(A.3), E(z]] t, s) defined as above
converges to a linear bounded operator U(t, s) on H when 8(zl)--O in the
uniform operator topology. That is, for any subdivision zl of [s, t] such
that () is sufficiently small, we have

U(t, s)--E( t, s)llC, [t-sl exp (C, It-st/2)3(z]).
Here, C is some positive constant independent of z], s, t e (-T, T) and I1" 11
stands for the operator norm in H. Moreover, the family of bounded
operators {U(t, s) t, s e (-- T, T)} satisfies the following properties" (i) U(s, s)
=Id. (ii) For any e H, the mapping t e (--T, T)--U(t, s) e H is con-
tinuous. (iii) U(t, t)U(t, t)= U(t, t) for any t e (-T, T). (iv) For any
t, s e (-T, T) and e F(), U(t, s) is differentiable with respect to t and
it satisfies

d U(t, s)+iHU(t, s)p=0.
dt

Here H is given by H=bH# where

Hu(x, t)=f H(x; , t; ) exp(--i<]x>-i<lt})(Fu)(, )dd.
J

Remark. Putting n=N and using the representation #p(’)b defined
before, we get a system o pseudo-differential operators o rder less than
2 on R,/ developed in Getzler [1].
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