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15. A Formulation o Noncommutative McMillan Theorem

By Masanori 0HYA,*) Makoto TSUKADA,*)
and Hisaharu UMEGAKI**)

(Communicated by K6saku YOSIDA, M. J. A., March 12, 1987)

1. Introduction. In this short note, we formulate and prove a
McMillan type convergence theorem in a noncommutative dynamical system
based on our works about entropy operators [1].

Before formulating the McMillan theorem, we discuss a description of
noncommutative dynamical systems, a noncommutative message space and
entropy operators.

A noncommutative dynamical system (NDS for short) can be described
by avon Neumann algebraic triple or, more generally, a C*-algebraic triple
denoted by (,, ). Namely, !}l is a von Neumann algebra or C*-algebra,

is the set of all states on and is an automorphism of describing a
certain evolution of the system. A self-adjoint element A of the algebra
9l corresponds to a random variable in usual commutative dynamical
(probability) systems (CDS for short) and a state in NDS corresponds to a
probability measure in CDS. Here we use a von Neumann algebraic
description for simplicity. Consult the bibliography [2] for NDS and
noncommutative probability theory.

Let be a finite dimensional von Neumann (matrix) algebra acting on
a Hilbert space ( with a faithful normal tracial state r, and let P() be
the set of all minimal finite partitions of unit I in a von Neumann sub-
algebra 99 of 9%. A set of projections P=(P#} is said to be a minimal
partition of I in !ff if P e !g(V]), PJ_P (i=#-]) and P-I hold, and for
each ] there does not exist a projection E such as OEP. Since any
two partitions P=(P#} and Q=(Q} are unitary equivalent, the entropy
operator H(!g) and the entropy S(99) w.r.t. !g and v can be uniquely defined
as [1]
(1.1) H:() -,P log r(P)
(1.2) S(99%) r(H(!ff))
for any P----{P} e P(O)D. The above entropy S(9:) has already been dis-
cussed in [3, 4] without considering H().

Now for any von Neumann subalgebras , and . of and any
partition P={P} e P(![.), it is easily seen that P is not always in P(,V)
but there exists a partition {P} in P(,V) such that P=,, P,, where
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!gV. is the von Neumann algebra generated by and . In the same
vein as H(!ff0 and S(!g0, we can formulate the conditional entropy operator
and the conditional entropy by the ollowing way [1]
(1.3) H(g) [2)= -- P{log r(P)-- log r(P)},
(1.4) S,()=r(S(, )),
where {P} e P() and {P} e P() with P= P. This conditional
entropy operator satisfies the similar relations carried by the conditional
entropy unction in CDS [5]. For example, we have

Theorem 1. (1) H()=H(]CI), where CI={21; 2 e C}.
(2) H(V)=H([)+H,().
(3) I/ , then H,()=H,(]).

This theorem has been proved in [1] and makes us easily handle the
entropy operators in NDS.

Now we set a noncommutative message space, with respect to which
we formulate the noncommutative McMillan theorem. Since r is aithful
normal, r might be represented by a vector x in such that

(.)=<x, .x>,
where <., > is the inner product o . Let be the infinite tensor product
of with respect to the above vector x in the sense of von Neumann and
be denoted by

=@ {, x}.
We define the noncommutative message space as the ven Neumann
algebra on generated by operators An (n e Z) defined as 2ollows for each
n e Z, let A be an operator on , then

A(x)=2x with x Ax+(1-)x.
This message space is called the infinite tensor product of ven Neumann
algebra and is denoted by

=@: {, }
where corresponds to the alphabet space in CDS. More general non-
commutative message spaces and their physical properties will be discussed
in terms of ergodic channels. Now, or the n-times tensor product Hilbert
space =@, every element Q in B(), the set of all bounded linear
operators on , can be canonically embedded into B(+,) in such a way
that QQ@I, so that we have the canonical embedding ] from n=@n
(the n-times tensr product of von Neumann algebra ) into =@.

For avon Neumann subalgebra of , let and n be
@,

=]().
Then becomes a von Neumann subalgebra (message subspace) of .
Using a shit operator a defined as a(@A)=@A+ (A e or each k), the
above is expressed by

2=V-k=0-k.@ 2. McMillan convergence theorem. Our "information source" is
now described by (,, a) and a state f on the message space . The
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state controls the transmission of information, so that the McMillan
theorem is written in terms of , and the entropy operator defined by
(1.1). We assume that , the restriction of to , is tracial. Then the
entropy operator w.r.t. and

_
is given by

(n)(2.1) H(_)--- Qn) log n(Q ),
where {Q)} is a minimal finite partition of unit in .

Theorem 2. Under the above settings, we have (1) there exists an a-

invariant operator h in such that H()/n converges to h ?-almost
uniformly and strongly as no (2) if is ergodic (i.e., {A e a(A)=A}

CI), then h=(h)I.
Proof. For any minimal finite partition (P;i=I, ...,N} in , the

family {P,P...P} is a minimal finite partition in , where n
indices i,...,i run from 1 to N. As n is a finite dimensional von
Neumann algebra, H() defined in (2.1) can be expressed by

H() ,...,= P,...Plog (P,...P).
Let us consider the yon Neumann subalgebra of generated by the
family {P@...@P} Cn={P@ "@P; i, i2, ", i=1, ...,N}", and let

C={P}"=C. Then C is the n-times tensor product of C, and C, C are com-
mutative von Neumann algebras, so that from Theorem 6.3 of [2], there
exist compact Hausdorff spaces 9, 9 and probability measures , such
that

CL(,
CL(9,

Moreover, C is monotone increasing and generates the infinite tensor
product C of C. Since C is commutative, there exist a compact Hausdorff
space and a probability measure , such that

L(, fi)
and

(P, P,) fi(A,...),
where P,...P,. corresponds to the characteristic function 1,..., for
some measurable set ,..., in 9. Thus the commutative McMillan theorem
together with Theorem 1 implies that our entropy operator H,()/n
converges to some a-invariant operator h e C=L(9, fi) -a.u. because of

?-a.u. =-a.e. Since C increasingly converges to C and there always exists
the conditional expectation from onto C [2, 6], the L-convergence of
H()/n is equal to the strong-convergence of H()/n because of the
Martingale convergence theorem of Umegaki [2, 7]. The a-invariance of
h is trivial from the definition of H()/n.

(2) is an immediate consequence of (1). Q.E.D.
We would like to give a few remarks here" When we use a pure state

(projection) as a quantum mechanical signal (al,phabet)as usually done, the
proof of the noncommutative McMillan theorem is essentially traced from
that of the commutative McMillan theorem, which is a main claim of this
paper. However when one tries to use a coherent state or a mixture of
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pure states as an input signal, the situation might be different, in which
more general ormulation of the entropy operators and the McMillan
theorem would be desirable. This will be done by dropping some of our
assumptions; or instance, (1)representing each element of message by a
projection, (2) the finite dimensionality of , (3) the traciality of n= n.
Such a generalization with some applications in quantum information
theorem [8, 10] and physical state change [9] will be discussed elsewhere.
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