36. On Some Points in Vector Analysis

By Satoshi ARIMA*) and You ASAEDA**)

(Communicated by Shokichi IYANAGA, M. J. A., April 13, 1987)

1. In the electro-magnetic theory of James Clerk Maxwell, one encounters the notions of intensities and of fluxes. Both are represented by triples of real numbers referred to a system of orthonormal coordinates or a frame $(O; e_1, e_2, e_3)$ in the Euclidean 3-space. When this frame is transformed to another frame $(O'; e'_1, e'_2, e'_3)$, then (e'_1, e'_2, e'_3) should be $(e_1, e_2, e_3)T$ with an orthogonal matrix T. If an intensity is represented by (x_1, x_2, x_3) referred to $(O; e_1, e_2, e_3)$ then it will be represented by (x'_1, x'_2, x'_3) $= (x_1, x_2, x_3)T$ when referred to $(O'; e'_1, e'_2, e'_3)$, whereas a flux represented by (x_1, x_2, x_3) in the first frame will be represented by (x_1, x_2, x_3) (det T)T in the second frame. In the literature, the *intensity* in this sense is often called the *vector*, and the *flux* is called the *pseudo-vector*. Analogously, the *pseudo-scalar* is often defined as the "quantity" represented by a real number x with respect to a frame, x being replaced by x (det T) when the frame is transformed.

The purpose of this paper is to give mathematical definitions of pseudovectors and of pseudo-scalars and to show their usefulness in clarifying some points in geometry, kinematics and electro-magnetic theory in the Euclidean 3-space.

2. Let *E* be the Euclidean 3-space with the vector space *V*, and $\wedge^{p}(V)$ be a *p*-fold exterior power of *V*, p=1,2,3. Then dim $\wedge^{2}(V)=3$, dim $\wedge^{3}(V)=1$. Let (e_{1}, e_{2}, e_{3}) , (e'_{1}, e'_{2}, e'_{3}) be two sets of orthonormal bases of *V*, $(e'_{1}, e'_{2}, e'_{3}) = (e_{1}, e_{2}, e_{3})T$ with an orthogonal matrix *T*, then $\wedge^{2}(V)$ has two sets of bases $(e_{2} \wedge e_{3}, e_{3} \wedge e_{1}, e_{1} \wedge e_{2})$, $(e'_{2} \wedge e'_{3}, e'_{3} \wedge e'_{1}, e'_{1} \wedge e'_{2}) = (e_{2} \wedge e_{3}, e_{3} \wedge e_{1}, e_{1} \wedge e_{2})\tilde{T}$, where $\tilde{T}=(\det T)T$ is the cofactor matrix of *T*, which is an orthogonal matrix. If $\wedge^{2}(V) \ni X = (x_{1}, x_{2}, x_{3})$ with respect to $(e_{2} \wedge e_{3}, e_{3} \wedge e_{1}, e_{1} \wedge e'_{2})$, then $(x'_{1}, x'_{2}, x'_{3}) = (x_{1}, x_{2}, x_{3})$ (det *T*)*T*. Hence we define

Definition 1. A pseudo-vector is an element of $\wedge^2(V)$.

Now $e_1 \wedge e_2 \wedge e_3$ and $e'_1 \wedge e'_2 \wedge e'_3$ are bases of $\wedge^3(V)$, and $e'_1 \wedge e'_2 \wedge e'_3 = (\det T)$ $e_1 \wedge e_2 \wedge e_3$. If an element ξ of $\wedge^3(V)$ is expressed as $\xi = xe_1 \wedge e_2 \wedge e_3 = x'e'_1 \wedge e'_2$ $\wedge e'_3$, then x' = x (det T).

Definition 2. A pseudo-scalar is an element of $\wedge^{\mathfrak{s}}(V)$.

Now, let U be a fixed differentiable manifold and W be a vector space (over **R**). A C¹-map of U to W is called a W-field. The set $C^{1}(U, W)$ of all W-fields will be denoted by F(W). The exterior differentiation d sends

^{*)} Department of Mathematics, Waseda University.

^{**)} Department of Mathematics, Gakushuin University.

 $F(\mathbf{R})$ to $F(\mathbf{V})$, $F(\mathbf{V})$ to $F(\wedge^2(\mathbf{V}))$ and $F(\wedge^2(\mathbf{V}))$ to $F(\wedge^3(\mathbf{V}))$, thus it is in reality a common name of 3 maps $d_0: F(\mathbf{R}) \rightarrow F(V), d_1: F(V) \rightarrow F(\wedge^2(V)),$ $d_2: F(\wedge^2(V)) \rightarrow F(\wedge^3(V))$. Now the well-known operator * interchanges **R** with $\wedge^{3}(V)$, V with $\wedge^{2}(V)$ with respect to an orientation of E. It induces therefore 4 maps $*_0: F(\mathbb{R}) \rightarrow F(\wedge^{\mathfrak{s}}(\mathbb{V})), *_1: F(\mathbb{V}) \rightarrow F(\wedge^{\mathfrak{s}}(\mathbb{V})), *_2: F(\wedge^{\mathfrak{s}}(\mathbb{V})) \rightarrow F(\wedge^{\mathfrak{s}}(\mathbb{V}))$ $F(V), *_3: F(\wedge^{3}(V)) \rightarrow F(R)$. From these we obtain 3 maps $\delta_v = (-1)^{p*} + d_{3-v} + d_{3-v} + v$ p=1, 2, 3, which will be simply denoted by δ .

Traditionally there are two well-known operators div and rot, each of which consists in reality of two operators: div of div_1 and div_2 ; div_1 is a map from F(V) to F(R) which coincides with our $-\delta_1(=-\delta)$, and $\operatorname{div}_2=d_2$: $F(\wedge^2(V)) \rightarrow F(\wedge^3(V))$; rot consists of $\operatorname{rot}_1 = d_1 : F(V) \rightarrow F(\wedge^2(V))$ and $\operatorname{rot}_2 = \delta_2$: $F(\wedge^2(V)) \rightarrow F(V).$

In this way, all the well-known operators d, *, div, rot are redefined and d, div, rot are free from frame and orientation.

Furthermore, we introduce the co-exterior product of a vector $\mathbf{a} \in V$ and a pseudo-vector $B \in \bigwedge^2(V)$ by

 $B \lor a = *(*B \land a) \in V.$

This is also frame-free.

Example (i) Rotating frame and angular velocity. Let $S: \mathbf{R} \rightarrow SO$ be a C^2 -map from **R** to the special orthogonal group **SO** of degree 3. If (e_1, e_2, e_3) is a fixed orthonormal base of V, then $s(t) = (s_1(t), s_2(t), s_3(t))$ $=(e_1, e_2, e_3)S(t)$ is another orthonormal base of V, and $(s_2(t) \land s_3(t), s_3(t) \land s_1(t), s_2(t) \land s_2(t), s_3(t) \land s_1(t), s_2(t) \land s_2(t) \land s_3(t) \land s_3(t)$ $s_1(t) \wedge s_2(t)$ is a base of $\wedge^2(V)$. $A(t) = {}^tS(t){}^tS(t)$ is an antisymmetric matrix, belonging to the Lie algebra so(3). Let $\nu = \nu(t)$ be the isomorphism

of $\wedge^2(V)$ to so(3) such that $\nu(s_2(t) \wedge s_3(t)) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}$, $\nu(s_3(t) \wedge s_1(t)) = \begin{pmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $\nu(s_1(t) \wedge s_2(t)) = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ and $\Omega(t) = \nu^{-1}(A(t))$. This element of $\wedge^2(V)$ is called

the angular velocity of the "rotating frame" $\Sigma(t) = (O; s_1(t), s_2(t), s_3(t))$ rotating around O. Then we have $(d^2s(t))/dt^2 = \Omega'(t) \lor s(t) + \Omega(t) \lor (\Omega(t) \lor s(t))$. This is the equation of motion expressed independently of orientation.

(ii) Maxwell's equations. E^{T} denotes the time-space, which is the naturally oriented 1-dimensional Euclidean space. $E \times E^{T}$ will be considered The so-called electric field, magnetic field, field of electric as U in §2. current density, and field of electric charge density, often denoted by e, B, *i* and ρ are in our language V-field, $\wedge^2(V)$ -field, V-field and R-field respectively. The electro-magnetic field is (e, B, j, o) and Maxwell's equations are written in the form

 $(I) \quad (\operatorname{rot}_{1} \boldsymbol{e})(X, T) = -\frac{\partial \boldsymbol{B}(X, T)}{\partial T}$ $(II) \quad (\operatorname{rot}_{2} \boldsymbol{B})(X, T) = \mu_{0} \boldsymbol{j}(X, T) + \frac{1}{c^{2}} \frac{\partial \boldsymbol{e}(X, T)}{\partial T}$ in $\wedge^{2}(V)$ in V

On Some Points in Vector Analysis

(III) $\varepsilon_0(\operatorname{div}_1 \boldsymbol{e})(X, T) = \rho(X, T)$ in \boldsymbol{R}

(IV) $(\operatorname{div}_2 \boldsymbol{B})(X, T) = 0$

in $\wedge^{3}(V)$.

These equations are frame-free.

A part of this note was presented and distributed at the ICM 86, Berkeley. A detailed description is in [1].

References

- S. Arima and Y. Asaeda: Vector Fields and Electro-magnetic Fields. Tokyo-tosho, Tokyo (to appear) (in Japanese).
- [2] J. A. Schouten: Tensor Analysis for Physicists. Clarendon Press, Oxford (1954).
- [3] J. C. Maxwell: A Treatise on Electricity and Magnetism. Dover, New York (1891).
- [4] H. Flanders: Differential Forms with Applications to the Physical Sciences. Academic Press (1963).

133

No. 4]