36. On Some Points in Vector Analysis

By Satoshi Arima*) and You Asaeda**)
(Communicated by Shokichi Iyanaga, m. J. A., April 13, 1987)

1. In the electro-magnetic theory of James Clerk Maxwell, one encounters the notions of intensities and of fluxes. Both are represented by triples of real numbers referred to a system of orthonormal coordinates or a frame ($O ; e_{1}, e_{2}, e_{3}$) in the Euclidean 3 -space. When this frame is transformed to another frame ($O^{\prime} ; \boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}$), then ($\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}$) should be $\left(e_{1}, e_{2}, e_{3}\right) T$ with an orthogonal matrix T. If an intensity is represented by $\left(x_{1}, x_{2}, x_{3}\right.$) referred to ($O ; \boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$) then it will be represented by ($x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}$) $=\left(x_{1}, x_{2}, x_{3}\right) T$ when referred to ($O^{\prime} ; \boldsymbol{e}_{1}^{\prime}, e_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}$), whereas a flux represented by $\left(x_{1}, x_{2}, x_{3}\right)$ in the first frame will be represented by $\left(x_{1}, x_{2}, x_{3}\right)(\operatorname{det} T) T$ in the second frame. In the literature, the intensity in this sense is often called the vector, and the flux is called the pseudo-vector. Analogously, the pseudo-scalar is often defined as the "quantity" represented by a real number x with respect to a frame, x being replaced by $x(\operatorname{det} T)$ when the frame is transformed.

The purpose of this paper is to give mathematical definitions of pseudovectors and of pseudo-scalars and to show their usefulness in clarifying some points in geometry, kinematics and electro-magnetic theory in the Euclidean 3-space.
2. Let \boldsymbol{E} be the Euclidean 3 -space with the vector space \boldsymbol{V}, and $\wedge^{p}(\boldsymbol{V})$ be a p-fold exterior power of $V, p=1,2,3$. Then $\operatorname{dim} \wedge^{2}(V)=3, \operatorname{dim} \wedge^{3}(V)$ $=1$. Let $\left(e_{1}, e_{2}, e_{3}\right),\left(e_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right)$ be two sets of orthonormal bases of $V,\left(\boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{2}^{\prime}, \boldsymbol{e}_{3}^{\prime}\right)$ $=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right) T$ with an orthogonal matrix T, then $\wedge^{2}(V)$ has two sets of bases $\left(e_{2} \wedge e_{3}, e_{3} \wedge e_{1}, e_{1} \wedge e_{2}\right),\left(e_{2}^{\prime} \wedge e_{3}^{\prime}, e_{3}^{\prime} \wedge e_{1}^{\prime}, e_{1}^{\prime} \wedge e_{2}^{\prime}\right)$, and $\left(e_{2}^{\prime} \wedge e_{3}^{\prime}, e_{3}^{\prime} \wedge e_{1}^{\prime}, e_{1}^{\prime} \wedge e_{2}^{\prime}\right)=\left(e_{2} \wedge e_{3}\right.$, $\left.\boldsymbol{e}_{3} \wedge \boldsymbol{e}_{1}, \boldsymbol{e}_{1} \wedge \boldsymbol{e}_{2}\right) \tilde{T}$, where $\tilde{T}=(\operatorname{det} T) T$ is the cofactor matrix of T, which is an orthogonal matrix. If $\wedge^{2}(V) \ni X=\left(x_{1}, x_{2}, x_{3}\right.$) with respect to ($e_{2} \wedge e_{3}, e_{3} \wedge e_{1}$, $\left.\boldsymbol{e}_{1} \wedge \boldsymbol{e}_{2}\right)$ and $\boldsymbol{X}=\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ with respect to $\left(\boldsymbol{e}_{2}^{\prime} \wedge \boldsymbol{e}_{3}^{\prime}, \boldsymbol{e}_{3}^{\prime} \wedge \boldsymbol{e}_{1}^{\prime}, \boldsymbol{e}_{1}^{\prime} \wedge \boldsymbol{e}_{2}^{\prime}\right)$, then $\left(x_{1}^{\prime}, x_{2}^{\prime}, x_{3}^{\prime}\right)$ $=\left(x_{1}, x_{2}, x_{3}\right)(\operatorname{det} T) T$. Hence we define

Definition 1. A pseudo-vector is an element of $\Lambda^{2}(V)$.
Now $e_{1} \wedge e_{2} \wedge e_{3}$ and $e_{1}^{\prime} \wedge e_{2}^{\prime} \wedge e_{3}^{\prime}$ are bases of $\wedge^{3}(V)$, and $e_{1}^{\prime} \wedge e_{2}^{\prime} \wedge e_{3}^{\prime}=(\operatorname{det} T)$ $\boldsymbol{e}_{1} \wedge \boldsymbol{e}_{2} \wedge \boldsymbol{e}_{3}$. If an element ξ of $\wedge^{3}(V)$ is expressed as $\boldsymbol{\xi}=x \boldsymbol{e}_{1} \wedge \boldsymbol{e}_{2} \wedge \boldsymbol{e}_{3}=x^{\prime} \boldsymbol{e}_{1}^{\prime} \wedge \boldsymbol{e}_{2}^{\prime}$ $\wedge \boldsymbol{e}_{3}^{\prime}$, then $x^{\prime}=x(\operatorname{det} T)$.

Definition 2. A pseudo-scalar is an element of $\wedge^{3}(V)$.
Now, let U be a fixed differentiable manifold and W be a vector space (over R). A C^{1}-map of U to W is called a W-field. The set $C^{1}(U, W)$ of all W-fields will be denoted by $F(W)$. The exterior differentiation d sends

[^0]$F(\boldsymbol{R})$ to $F(V), F(V)$ to $F\left(\wedge^{2}(V)\right)$ and $F\left(\wedge^{2}(V)\right)$ to $F\left(\wedge^{3}(V)\right)$, thus it is in reality a common name of 3 maps $d_{0}: F(R) \rightarrow F(V), d_{1}: F(V) \rightarrow F\left(\wedge^{2}(V)\right)$, $d_{2}: F\left(\wedge^{2}(V)\right) \rightarrow F\left(\wedge^{3}(\boldsymbol{V})\right)$. Now the well-known operator $*$ interchanges \boldsymbol{R} with $\wedge^{3}(\boldsymbol{V}), \boldsymbol{V}$ with $\wedge^{2}(\boldsymbol{V})$ with respect to an orientation of \boldsymbol{E}. It induces therefore 4 maps $*_{0}: F(R) \rightarrow F\left(\wedge^{3}(V)\right), *_{1}: F(V) \rightarrow F\left(\wedge^{2}(V)\right), *_{2}: F\left(\wedge^{2}(V)\right) \rightarrow$ $\boldsymbol{F}(\boldsymbol{V}), *_{3}: \boldsymbol{F}\left(\wedge^{3}(\boldsymbol{V})\right) \rightarrow \boldsymbol{F}(\boldsymbol{R})$. From these we obtain 3 maps $\delta_{p}=(-1)^{p *}{ }_{4-p} d_{3-p} *_{p}$, $p=1,2,3$, which will be simply denoted by δ.

Traditionally there are two well-known operators div and rot, each of which consists in reality of two operators: div of div_{1} and $\operatorname{div}_{2} ; \operatorname{div}_{1}$ is a map from $F(V)$ to $F(\boldsymbol{R})$ which coincides with our $-\delta_{1}(=-\delta)$, and $\operatorname{div}_{2}=d_{2}$: $F\left(\wedge^{2}(V)\right) \rightarrow F\left(\wedge^{3}(V)\right)$; rot consists of $\operatorname{rot}_{1}=d_{1}: F(V) \rightarrow F\left(\wedge^{2}(V)\right)$ and $\operatorname{rot}_{2}=\delta_{2}:$ $F\left(\wedge^{2}(V)\right) \rightarrow F(V)$.

In this way, all the well-known operators $d, *$, div, rot are redefined and d, div, rot are free from frame and orientation.

Furthermore, we introduce the co-exterior product of a vector $a \in V$ and a pseudo-vector $\boldsymbol{B} \in \wedge^{2}(V)$ by

$$
\boldsymbol{B} \backslash a=*(* B \wedge a) \in V
$$

This is also frame-free.
Example (i) Rotating frame and angular velocity. Let $S: \boldsymbol{R} \rightarrow \boldsymbol{S O}$ be a C^{2}-map from R to the special orthogonal group $S O$ of degree 3 . If $\left(e_{1}, e_{2}, e_{3}\right)$ is a fixed orthonormal base of V, then $s(t)=\left(s_{1}(t), s_{2}(t), s_{3}(t)\right)$ $=\left(e_{1}, e_{2} \cdot e_{3}\right) S(t)$ is another orthonormal base of V, and $\left(s_{2}(t) \wedge s_{3}(t), s_{3}(t) \wedge s_{1}(t)\right.$, $s_{1}(t) \wedge s_{2}(t)$) is a base of $\wedge^{2}(V) . \quad A(t)={ }^{t} S(t)^{\prime} S(t)$ is an antisymmetric matrix, belonging to the Lie algebra so(3). Let $\nu=\nu(t)$ be the isomorphism of $\wedge^{2}(V)$ to so (3) such that $\nu\left(s_{2}(t) \wedge s_{3}(t)\right)=\left(\begin{array}{rrr}0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0\end{array}\right), \nu\left(s_{3}(t) \wedge s_{1}(t)\right)=\left(\begin{array}{rrr}0 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & 0 & 0\end{array}\right)$, $\nu\left(s_{1}(t) \wedge s_{2}(t)\right)=\left(\begin{array}{rrr}0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ and $\Omega(t)=\nu^{-1}(A(t))$. This element of $\wedge^{2}(V)$ is called the angular velocity of the "rotating frame" $\Sigma(t)=\left(O ; s_{1}(t), s_{2}(t), s_{3}(t)\right)$ rotating around O. Then we have $\left(d^{2} s(t)\right) / d t^{2}=\Omega^{\prime}(t) \vee s(t)+\Omega(t) \vee(\Omega(t) \vee s(t))$. This is the equation of motion expressed independently of orientation.
(ii) Maxwell's equations. E^{T} denotes the time-space, which is the naturally oriented 1-dimensional Euclidean space. $\boldsymbol{E} \times \boldsymbol{E}^{T}$ will be considered as U in §2. The so-called electric field, magnetic field, field of electric current density, and field of electric charge density, often denoted by $\boldsymbol{e}, \boldsymbol{B}$, j and ρ are in our language V-field, $\wedge^{2}(V)$-field, V-field and R-field respectively. The electro-magnetic field is ($\boldsymbol{e}, \boldsymbol{B}, \boldsymbol{j}, \rho$) and Maxwell's equations are written in the form
(I) $\left(\operatorname{rot}_{1} e\right)(X, T)=-\frac{\partial B(X, T)}{\partial T}$
in $\wedge^{2}(V)$
(II) $\quad\left(\operatorname{rot}_{2} B\right)(X, T)=\mu_{0} j(X, T)+\frac{1}{c^{2}} \frac{\partial e(X, T)}{\partial T} \quad$ in V
(III) $\varepsilon_{0}\left(\operatorname{div}_{1} e\right)(X, T)=\rho(X, T)$

in R

(IV) $\quad\left(\operatorname{div}_{2} B\right)(X, T)=0$
in $\wedge^{3}(V)$.
These equations are frame-free.
A part of this note was presented and distributed at the ICM 86, Berkeley. A detailed descrintion is in [1].

References

[1] S. Arima and Y. Asaeda: Vector Fields and Electro-magnetic Fields. Tokyo-tosho, Tokyo (to appear) (in Japanese).
[2] J. A. Schouten: Tensor Analysis for Physicists. Clarendon Press, Oxford (1954).
[3] J. C. Maxwell: A Treatise on Electricity and Magnetism. Dover, New York (1891).
[4] H. Flanders: Differential Forms with Applications to the Physical Sciences. Academic Press (1963).

[^0]: *) Department of Mathematics, Waseda University.
 **) Department of Mathematics, Gakushuin University.

