34. Class Number One Criteria For Real Quadratic Fields. I

By R. A. Mollin
Mathematics Department, University of Calgary, Calgary, Alberta, Canada, T2N 1N4

(Communicated by Shokichi Iyanaga, m. J. A., April 13, 1987)

In [5] we established criteria for $Q(\sqrt{n})$ to have class number, $h(n)$, equal to one when $n=m^{2}+1$ is square-free. Portions of this result were rediscovered by Yokoi [15] and Louboutin [4], both of whom also found similar criteria for square-free integers of the form $n=m^{2}+4$. It is the purpose of this paper to generalize all of the above by providing criteria for $h(n)=1$ for a positive square-free integer $n \equiv 1(\bmod 4)$, under a certain assumption, which is satisfied (among others) by Richaud-Degert (R-D) types described below. One of these criteria is that $-x^{2}+x+(n-1) / 4$ is equal to a prime for all integers $x \in(1,(\sqrt{n-1}) / 2)$. This is the exact real quadratic field analogue of : $h(-p)=1$ if and only if $x^{2}-x+(p+1) / 4$ is prime for all integers $x \in[1,(p-7) / 4]$ where $p \equiv 3(\bmod 4)$ is prime and $p>7$. This was proved by Rabinowitsch [10] (see also [1], [12], and [13]).

We apply the criteria to real quadratic fields of narrow R-D type; i.e., those $n=m^{2}+r$ where $|r| \in\{1,4\}, n \neq 5$. We also observe that when $n=m^{2}$ +4 the existence of exactly six quadratic fields with $h(n)=1$ can be established by the same method used by Mollin and Williams in [9] to verify a similar fact for the case $n=m^{2}+1$.

The following notation is in force throughout the paper. For the field $Q(\sqrt{n})$ we denote the fundamental unit by $(T+U \sqrt{n}) / \sigma, \sigma=2$ if $n \equiv 1$ $(\bmod 4)$, and $\sigma=1$ otherwise. Moreover $N((T+U \sqrt{n}) / \sigma)=\delta$ where N denotes the norm from $Q(\sqrt{n})$ to Q. For convenience' sake we let $A=((2 T / \sigma)$ $-\sigma-1) / U^{2}$.

First we state the following result which we will need for the first main theorem. The proof of the following can be found in [5] (see also [8]).

Lemma. Let n be a square-free positive integer. If $h(n)=1$ then p is inert in $Q(\sqrt{ } \bar{n})$ for all primes $p<A$.

The converse of this Lemma is clearly false. For example, if $n=34$ then $\sigma=1, T=35, U=6$, and $\delta=1$ so $A=68 / 36<2$. However, $h(34)=2$. However, the converse does hold under certain circumstances, as the following main result illustrates.

Theorem. Let $n \equiv 1(\bmod 4)$ be a positive square-free integer, such that $(\sqrt{n-1}) / 2 \leq A$. Then the following are equivalent.
(1) $h(n)=1$;
(2) p is inert in $Q(\sqrt{ } \bar{n})$ for all primes $p<A$;
(3) $f(x)=-x^{2}+x+(n-1) / 4 \not \equiv 0(\bmod p)$ for all integers x and primes p satisfying $0<x<p<(\sqrt{n-1}) / 2$;
(4) $f(x)$ is equal to a prime for all integers x such that $1<x<(\sqrt{n-1}) / 2$.

Proof. (2) follows from (1) by the Lemma; (note that in this case $(\sqrt{n-1}) / 2 \leq A$ is not required). Assume now that (2) holds. If $f(x)$ $\equiv 0(\bmod p)$ for some $0<x<p<(\sqrt{n-1}) / 2$ then $n \equiv(2 x-1)^{2}(\bmod p)$; whence p is not inert in $Q(\sqrt{n})$. By (2) this forces $(\sqrt{n-1}) / 2>A$, contradicting the hypothesis. Thus (2) implies (3).

Assume (3) holds. If ($n-1$)/4 is composite, but not the square of a prime, then there exists a prime p dividing $(n-1) / 4$ such that $f(1) \equiv 0(\bmod p)$ with $0<1<p<(\sqrt{n-1}) / 2$. This contradicts (3). Hence for some prime p we must have that $(n-1) / 4=p$ or p^{2}.

Suppose that there are primes p_{1} and p_{2} (not necessarily distinct) such that $f(x) \equiv 0\left(\bmod p_{1} p_{2}\right)$ for some integer x with $1<x<(\sqrt{n-1}) / 2$. If $p_{1} p_{2}$ $\geq(n-1) / 4$ then $-x^{2}+x+(n-1) / 4 \geq(n-1) / 4$; whence $x \leq 1$, a contradiction. Therefore, without loss of generality we may assume that $p_{1}<(\sqrt{n-1}) / 2$. If p_{1} divides x then p_{1} divides $(n-1) / 4$; whence $p_{1}=p$. However we have that $p=p_{1} \leq x<(\sqrt{n-1}) / 2 \leq p$, a contradiction. Hence, in consideration of the congruence $f(x) \equiv 0\left(\bmod p_{1}\right)$ we may assume without loss of generality that $0<x<p_{1}$. Hence, we have $f(x) \equiv 0\left(\bmod p_{1}\right)$ with $0<x<p_{1}<(\sqrt{n-1}) / 2$ which contradicts (3). Thus (3) implies (4).

Finally assume that (4) holds. If $h(n)>1$ then by [3, Propositions 3 and 4, p. 126] there exist an integer x and a prime p such that $0 \leq x<p$ $\leq(\sqrt{n-1}) / 2$ and both :
(a) $N((2 x-1-\sqrt{n}) / 2) \equiv 0(\bmod p)$ and
(b) there does not exist an integer k such that $|N(2 x+2 k p-1-\sqrt{n}) / 2|$ $<p^{2}$.

From (a) it follows that $-x^{2}+x+(n-1) / 4 \equiv 0(\bmod p)$. Therefore, if $1<x<(\sqrt{n-1}) / 2$ then, by (4), $-x^{2}+x+(n-1) / 4=p$. However $x<p$ $\leq(\sqrt{n-1}) / 2$; whence $p=x(1-x)+(n-1) / 4>p(1-p)+p^{2}=p$, a contradiction. Hence $x=0$ or 1 . Therefore p divides $(n-1) / 4$; whence $f(p)=$ $p(-p+1+(n-1) / 4 p)$. If $p<(\sqrt{n-1}) / 2$ then (4) implies that $f(p)=p$. Thus $p=(\sqrt{n-1}) / 2$, a contradiction. Hence $p=(\sqrt{n-1}) / 2$. Setting $k=1$ in (b) yields that: $p^{2} \leq|N(2 p \pm 1-\sqrt{n}) / 2|=\left|\left(4 p^{2} \pm 4 p+1-n\right) / 4\right|=p$, a contradiction. This secures the result. Q.E.D.

The following special case of the Theorem for certain R-D type was proved in [5]. It was also rediscovered by Yokoi [15] and Louboutin [4]. See also [7].

Corollary 1. If $n=4 l^{2}+1$ is square-free where either n is composite or l is composite then $h(n)>1$. If $n=4 q^{2}+1$ where n and q are primes then the following are equivalent:
(1) $h(n)=1$;
(2) p is inert in $Q(\sqrt{ } \bar{n})$ for all primes $p<q$;
(3) $f(x)=-x^{2}+x+q^{2} \not \equiv 0(\bmod p)$ for all integers x and primes p such that $0<x<p<q$;
(4) $f(x)$ equals a prime for all x with $1<x<q$.

Proof. By [2] and [11] $T=4 l$ and $U=2$. Moreover, $\delta=-1,(\sqrt{n-1}) / 2$ $=l$ and $A=l$. Thus the hypothesis of the theorem is satisfied. Q.E.D.
S. Chowla conjectured that if $p=m^{2}+1$ is prime with $m>26$ then $h(p)$ >1. Thus Corollary 1 reduces the conjecture to the case where $m=2 q$, $q>13$ prime. This exhausts the algebraic techniques (see [5]). Using analytic techniques and the generalized Riemann hypothesis, Mollin and Williams proved the Chowla conjecture in [9].

We now turn to another interesting consequence of the Theorem. The following R-D types were also considered by Yokoi [15] and Louboutin [4]. Both of these authors' results follow as a special case of the following.

Corollary 2. Let $n=m^{2} \pm 4>5$ be square-free. Then $h(n)>1$ unless $n=4 p+1$ where p is prime. In this case the following are equivalent:
(1) $h(n)=1$;
(2) q is inert in $Q(\sqrt{n})$ for all primes $q<\left\{\begin{array}{ll}m & \text { if } n=m^{2}+4 \\ m-2 & \text { if } n=m^{2}-4\end{array}\right.$;
(3) $f(x)=-x^{2}+x+p \not \equiv 0(\bmod q)$ for all integers x and primes q satisfying $0<x<q<\sqrt{p}$;
(4) $f(x)$ is equal to a prime for all integers x satisfying $1<x<\sqrt{p}$.

Proof. By [2] and [11] $T=m$ and $U=1$. An easy check shows that $(\sqrt{n-1}) / 2 \leq A$. Thus the hypothesis of the Theorem is satisfied, and the equivalence (1)-(4) is secured. It remains to show that $h(n)>1$ unless $n=m^{2} \pm 4=4 p+1$ where p is prime.

Suppose that $(n-1) / 4$ is not prime and $h(n)=1$. Then (3) of the Theorem implies, by the same reasoning as in the proof of the Theorem, that $(n-1) / 4=p^{2}$ for some prime p. Therefore $m^{2}-4 p^{2}=5$ (respectively $m^{2}-4 p^{2}=-3$) when $n=m^{2}-4$ (respectively $n=m^{2}+4$). In the former case $m+2 p=5$ is forced, contradicting $m>3$; and in the latter case $m-2 p=-3$ is forced, contradicting $m>1$. This shows that $n=4 p+1$ for some prime p when $h(n)=1$.
Q.E.D.

Remark 1. In [15] Yokoi conjectured that $h(n)>1$ when $n=q^{2}+4$ is square-free with $q>17$ prime. Under the assumption of the generalized Riemann hypothesis this conjecture follows in the same fashion as did the analogous Chowla conjecture proved by Mollin and Williams in [9].

Remark 2. Suppose that $n=4 p+1=m^{2}+4$ where p is a prime and m is a positive integer. If $s<\sqrt{p}$ is an odd prime then $p \equiv t(\bmod s)$ for $0 \leq t$ $<s$. If there exists an integer $u>0$ such that $1+4 t \equiv(2 u-1)^{2}(\bmod s)$ then $f(u)=-u^{2}+u+p \equiv 0(\bmod s)$ where $0<u<s<\sqrt{p}$. This violates condition (3) of Corollary 2. Hence $h(n)>1$. (See [6] for connections with generalized Fibonacci primitive roots.)

The following Table illustrates Corollaries 1-2. We list the $r=1$ case
only up to $m=26$ since we know by Remark 1 that $h(n)>1$ for $m>26$. Similarly we list the $r=4$ only up to $m=17$. For $r=-4$ with $h(n)=1$ it is unlikely that any other such n exist than those listed in the Table.

Table. $n=m^{2}+r$

m	r	n	$h(n)$
6	1	37	1
8	1	65	2
10	1	101	1
12	1	145	4
14	1	197	1
16	1	257	3
20	1	401	5
22	1	485	2
26	1	677	1
5	4	29	1
7	4	53	1
9	4	85	2
13	4	173	1
15	4	229	3
17	4	293	1
5	-4	21	1
9	-4	77	1
21	-4	437	1
309	-4	95477	11

All class numbers are taken from [14].
In a subsequent work we will look at wide R-D types in detail.
Acknowledgement. This research was supported by both N.S.E.R.C. Canada Grant \#A8484 and an I. W. Killam Award held at the University of Calgary in 1986.

References

[1] R. G. Ayoub and S. Chowla: On Euler's Polynomial. J. Number Theory, 13, 443-445 (1981).
[2] G. Degert: Über die Bestimmung der Grudeinheit gewisser reell-quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 22, 92-97 (1958).
[3] M. Kutsuna: On a criterion for the class number of a quadratic number field to be one. Nagoya Math. J., 79, 123-129 (1980).
[4] S. Louboutin: Critères des principalité et minoration des nombres de classes l'idéaux des corps quadratiques réels à l'aide de la théorie des fractions continues (preprint).
[5] R. A. Mollin: Necessary and sufficient conditions for the class number of a real quadratic field to be one, and a conjecture of S. Chowla (to appear in Proc. Amer. Math. Soc.).
[6] -: Generalized Fibonacci primitive roots, and class numbers of real quadratic fields (to appear in The Fibonacci Quarterly).
[7] -: Diophantine equations and class numbers. J. Number Theory, 24, 7-19 (1986).
[8] R. A. Mollin: On the insolubility of a class of diophantine equations and the nontriviality of the class numbers of related real quadratic fields of Richaud-Degert type (to appear in Nagoya Math. J.).
[9] R. A. Mollin and H. C. Williams: A conjecture of S. Chowla via the generalized Riemann hypothesis (to appear in Proc. Amer. Math. Soc.).
[10] G. Rabinowitsch: Eindeutigkeit der Zerlegung in Primzahlfaktoren in quadratischen Zahlkörpern. J. Rein Angew Math., 142, 153-164 (1913).
[11] C. Richaud: Sur la résolution des équations $x^{2}-A y^{2}= \pm 1$. Atti. Accad. Pontif. Nuovi Lincei, 177-182 (1866).
[12] R. Sasaki: On a lower bound for the class number of an imaginary quadratic field. Proc. Japan Acad., 62A, 37-39 (1986).
[13] H. M. Stark: A complete determination of the complex quadratic fields of classnumber one. Michigan Math. J., 14, 1-27 (1967).
[14] H. Wada: A table of ideal class numbers of real quadratic fields. Kokyuroku in Math., 10, Sophia University, Tokyo (1981).
[15] H. Yokoi: Class-number one problem for certain kinds of real quadratic fields (preprint series \#7, Nagoya University (1986)).

