47. Singularities of the Moduli Space of Yang-Mills Fields

By Mitsuhiro Itoh

Institute of Mathematics, University of Tsukuba

(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1987)

1. Let P be a G-bundle over a compact Kähler surface (M, h). We denote by $\mathcal{M} = \mathcal{M}(h)$ the set of all gauge equivalence classes of h-anti-selfdual (h-ASD) connections on P. The moduli space $\mathcal{M}(h)$ is a complex manifold possibly with singularities ([4], [6]). Actually around a point corresponding to a generic ASD connection $\mathcal{M}(h)$ has a complex manifold structure and around a point which is not generic it is described as either a complex analytic set or a stabilizer-quotient of a real analytic set. In this note we treat details of singular points on the moduli space.

2. For simplicity we assume that G is compact and semisimple. The base space M is assumed to be a compact, oriented Riemannian 4-manifold. An ASD connection A on P naturally induces the Yang-Mills complex: $\Omega^{0}(\mathfrak{g}_{P}) \xrightarrow{d_{A}} \Omega^{1}(\mathfrak{g}_{P}) \xrightarrow{d_{A}+} \Omega_{+}^{2}(\mathfrak{g}_{P})$. Here \mathfrak{g}_{P} is the adjoint bundle $P \times_{\mathrm{Ad}} \mathfrak{g}$ (\mathfrak{g} is the Lie algebra of G). The *i*-th cohomology group H_{A}^{i} of this complex is finite dimensional and the index $d=h^{0}-h^{1}+h^{2}$ is given by $\mathrm{Pont}_{1}(\mathfrak{g}_{P}^{C})+\dim G/2 \times (\chi_{M}+\mathrm{sgn}_{M}), h^{i}=\dim H_{A}^{i}$ ([3]). H_{A}^{0} is the Lie algebra of the stabilizer Γ_{A} , the group of gauge transformations of P fixing A. We call a connection generic when $H_{A}^{0}=0$ and $H_{A}^{2}=0$. The Yang-Mills complex presents completely in some sense information on local manifold structure of $\mathcal{M}(h)$ around the gauge equivalence class [A]. In fact $\mathcal{M}(h)$ has a Γ_{A} -quotient of a slice neighborhood $S_{A,\epsilon} = \{\alpha \in \Omega^{1}(\mathfrak{g}_{P}), |\alpha| < \varepsilon, d_{A}^{*}\alpha = 0, F_{+}(A+\alpha)=0\}$ and hence we have by making use of the Kuranishi map the following local structure theorem which was developed in for example [2], [11] in the case of G=SU(2).

Theorem 1. Singularities appear on $\mathcal{M}(h)$ exactly at ASD connections with $h^0 \neq 0$ or with $h^2 \neq 0$. Then $\mathcal{M}(h)$ admits possibly singularities of three types. Namely, (i) at a reducible ASD connection A with $h^2=0$ $\mathcal{M}(h)$ is locally homeomorphic to $\{x \in H_A^1 \cong \mathbb{R}^{a+h^0}; |x| < \varepsilon\}/\Gamma_A$ (quotient singularity), (ii) at A with $h^0=0$ and $h^2 \neq 0$ there is an analytic map Ψ ; $H_A^1 \cong \mathbb{R}^{a+h^2} \to H_A^2 \cong \mathbb{R}^{h^2}$ such that $\mathcal{M}(h)$ is locally homeomorphic around [A] to the zero point set $Zero(\Psi)_{\varepsilon} = \{x; \Psi(x)=0, |x| < \varepsilon\}$ (mapping critical point singularity) and (iii) at A with $h^0 \neq 0$ and $h^2 \neq 0$ there is a Γ_A -equivariant analytic map Ψ ; $H_A^1 \cong \mathbb{R}^{a'} \to H_A^2 \cong \mathbb{R}^{h^2}$ $\mathbb{R}^{a'} \to H_A^2 \cong \mathbb{R}^{h^2}$ (d'=d+h⁰+h²) in such a way that $\mathcal{M}(h)$ is around [A] homeomorphic locally to the quotient of the zero point set $Zero(\Psi)_{\varepsilon}/\Gamma_A$ (composition of above two types).

Remarks. The analytic maps Ψ are defined as $\Psi(\alpha) = \operatorname{pr}_{H^2}([f^{-1}\alpha \wedge f^{-1}\alpha]^+)$ where f is the Kuranishi map $\Omega^1(\mathfrak{g}_P) \to \Omega^1(\mathfrak{g}_P)$ and hence these can be approximated by quadratic maps. The stabilizer Γ_A acts as isometries on H_A^1 with a canonical metric so that at a singular point [A] of type (i) $\mathcal{M}(h)$ has an orbifold structure provided that Γ_A fixes only the origin. H_A^0 is independent of the Riemannian structure h in principle, whereas H_A^2 depends on h. The holonomy group of A correctly determines Γ_A and hence H_A^0 for Γ_A is the centralizer of the subgroup in G. $H_A^2=0$ if and only if the self-dual curvature map $\Omega^1(\mathfrak{g}_P) \rightarrow \Omega_+^2(\mathfrak{g}_P)$; $\alpha \mapsto F_+(A+\alpha)$ is surjective at A.

3. We assume that (M, h) is a compact Kähler surface. Then singularities of type (i) do not arise, since H^2_A is **R**-isomorphic to $H^0_A \oplus H^{0,2}$ ([6, Proposition 2.3]). Here $H^{0,2}$ is the second cohomology group of the twisted Dolbeault complex: $\mathcal{Q}^0(\mathfrak{g}^C_P) \xrightarrow{\delta_A} \mathcal{Q}^{0,1}(\mathfrak{g}^C_P) \xrightarrow{\delta_A} \mathcal{Q}^{0,2}(\mathfrak{g}^C_P)$. We note that cohomology groups H^0 , $H^{0,1}$ and $H^{0,2}$ are complex spaces, and $h^1 = 2h^{0,1}$ and $h^2 = h^0 + 2h^{0,2}$ $(h^{0,i} = \dim_{\mathbb{C}} H^{0,i})$. The last formula is a generalization of the well known formula $b^+ = 1 + 2p_{g}$.

Denote by $\mathcal{M}_{gon}(h)$ the subset of $\mathcal{M}(h)$ of generic ASD connections on P. $\mathcal{M}_{gen}(h)$ becomes a smooth manifold whose tangent space is H_A^1 and H_A^1 possesses a complex structure together with a Hermitian inner product induced naturally from the complex Kähler surface M. So $\mathcal{M}_{gen}(h)$ is a complex manifold equipped with a Kähler structure ([7]). $\mathcal{M}(h) \setminus \mathcal{M}_{gen}(h)$ consists exactly of all singular points and we have two types according to either case (a) in which A is irreducible $(h^0=0)$ but $h^{0,2} \neq 0$ or case (b) in which A is reducible $(h^0 \neq 0)$.

Theorem 2. Let P be a G-bundle over a compact Kähler surface (M, h). (i) At an ASD connection of type (a) $\mathcal{M}(h)$ is homeomorphic locally to a complex analytic set $Zero(\Psi)_{\varepsilon} = \{x \in H^{0,1}; |x| < \varepsilon, \Psi(x) = 0\}$, where Ψ ; $H^{0,1} \cong C^{a''} \rightarrow H^{0,2} \cong C^{h^{0,2}}$, $d'' = d/2 + h^{0,2}$, is a holomorphic map. (ii) Around an ASD connection of type (b) $\mathcal{M}(h)$ is locally homeomorphic to the Γ_{A} -quotient of $Zero(\Psi)_{\varepsilon} = \{x \in H_{A}^{1}; |x| < \varepsilon, \Psi(x) = 0\}$, where Ψ is a Γ_{A} -equivariant real analytic map $H_{A}^{1} \rightarrow H_{A}^{2}$.

(ii) in Theorem 2 is just (iii) of Theorem 1, while (i) is verified because we get a local homeomorphism $S_{A,\epsilon} \rightarrow S_{A,\epsilon}^{0,1}$. Here $S_{A,\epsilon}^{0,1}$ is a slice neighborhood of holomorphic connections modulo complex gauge transformations of P(see the discussion in § 4, [6]).

Remark. If (M, h) has positive total scalar curvature, then $H_A^{0,2}=0$. We have further $H_A^{0,2}=H_A^{0C}$ over a surface with trivial canonical line bundle. The singularity of type (a) does not depend on any deformation of base Kähler metrics.

4. We investigate for the case G=SU(2) the singularities of type (b) arising from reducible ASD connections. The following reduction theorem is mainly given in [5, Lemma 6.2].

Proposition 3. Let P be an SU(2)-bundle over (M, h) with instanton number $c_2(P \times_{\rho} C^2) = k$ ($\neq 0$). Then P admits a reducible ASD connection if and only if there is a holomorphic line bundle L with $c_1(L)^2 = -k$ and satisfying $c_1(L) \wedge [\omega_h] = 0$. $c_1(L) \wedge [\omega_h]$ is the obstruction for the existence of a Hermitian fibre metric on L whose curvature form is ASD. We remark that for an open dense set of Riemannian metrics on M, there are no complex line bundles with U(1) ASD connections, since M has indefinite intersection form ([2, Corollary 3.21]).

As is well known, the set of U(1)-gauge equivalence classes of ASD connections on the U(1)-bundle L is parametrized by the Abelian variety $H^{1}_{deR}(M)/H^{1}(M; \mathbb{Z})$ of dimension b^{1} . For the set of gauge equivalence classes of reducible SU(2)-ASD connections on P, which we denote by \mathcal{R} , we have similarly the following.

Proposition 4 ([5, Lemma 6.5]). Let $\{A_t\}$ be a one parameter family of reducible ASD connections on P with small |t| which is non trivial with respect to gauge transformations. Then $\{A_t\}$ induces a harmonic 1-form as the infinitesimal deformation. Conversely each harmonic 1-form yields a one parameter family of reducible ASD connections.

Since Γ_{A_0} acts trivially on the set $\left\{ \begin{pmatrix} \sqrt{-1}a & 0\\ 0 & -\sqrt{-1}a \end{pmatrix}; |a| < \varepsilon, a \text{ is a} \right\}$ harmonic 1-form which lies completely in $S_{A_0,i}$, \mathcal{R} is around $[A_0]$ a b^1 dimensional open ball. The number of connected components of \mathcal{R} is counted by $l=1/2 \notin \{L \in H^1(M; \mathcal{O}^*) \text{ with properties } c_1(L)^2 = -k, c_1(L) \land [\omega_h] = 0 \}$. If $b^1 = 0$, singular points of type (b) appear in an isolated manner.

Define a hyperplane $c_1(L)^{\perp}$ in $H^2_{deR}(M)$ by $\{\alpha \in H^2_{deR}(M); \alpha \land c_1(L)=0\}$. Then $H^2_{deR}(M) \setminus \bigcup \{c_1(L)^{\perp}; L \in H^1(M; \mathcal{O}^*) \text{ with } c_1(L)^2 = -k\}$ is not empty and we can deform the Kähler metric h to h_1 in its connected component so that from Proposition 3 the moduli space $\mathcal{M}(h_1)$ of h_1 -ASD connections is a Kähler manifold possibly only with singular points of type (a).

5. Comments. Local structure theorems on $\mathcal{M}(h)$ are the same as the deformation theory of complex structures on a complex manifold except the stabilizer argument ([9]). We can give in the same way a local structure theorem on the moduli space of generalized ASD connections over a higher dimensional Kähler manifold (see for generalized ASD connection [8], [10]). Donaldson makes use of the reduction criterion similar to Proposition 3 to define new topological invariants on 4-manifolds and get a negative answer to Severi's question on rationality ([1]).

Finally the author should express his gratitude to the Max-Planck-Institut für Mathematik for the hospitality during his stay in Bonn 1986.

References

- [1] S. K. Donaldson: Irrationality and the h-cobordism conjecture (preprint).
- [2] D. S. Freed and K. K. Uhlenbeck: Instantons and Four-manifolds. Springer-Verlag, New York (1984).
- [3] M. Itoh: On the moduli space of anti-self-dual Yang-Mills connections on Kähler surfaces. Publ. R.I.M.S., 10, 15-32 (1983).
- [4] ——: Geometry of Yang-Mills connections over a Kähler surface. Proc. Japan

Acad., 59A, 431-433 (1983).

- [5] M. Itoh: Self-dual Yang-Mills equations and Taubes' theorem. Tsukuba J. Math., 8, 1-29 (1984).
- [6] ——: The moduli space of Yang-Mills connections over a Kähler surface is a complex manifold. Osaka J. Math., 22, 845-862 (1985).
- [7] ——: Geometry of anti-self-dual connections and Kuranishi map (to appear in J. Math. Soc. Japan).
- [8] H. Kim: Curvatures and holomorphic vector bundles. Thesis, Berkeley (1985).
- [9] K. Kodaira and J. Morrow: Complex Manifolds. Holt, Rinehart, New York (1971).
- [10] N. Koiso: Yang-Mills connections and moduli space. Osaka J. Math., 24, 147–171 (1987).
- [11] H. B. Lawson, Jr.: The theory of gauge fields in four dimensions. Amer. Math. Soc. (1985).