51. The Steffensen Iteration Method for Systems of Nonlinear Equations. II

By Tatsuo Noda
Department of Applied Mathematics, Toyama Prefectural College of Technology
(Communicated by Kôsaku Yosida, m. J. A., June 9, 1987)

1. Introduction. In generalizing the Aitken δ^{2}-process in one dimension to the case of n-dimensions, Henrici [1, p. 116] has considered a formula, which is called the Aitken-Steffensen formula. In [2], we have studied the above Aitken-Steffensen formula for systems of nonlinear equations and shown [2, Theorem 2]. Moreover, in [3], we have considered a method of iteration for the above systems, which is often called the Steffensen iteration method, and shown [3, Theorem 1]. [3, Theorem 1] improves the result of [2, Theorem 2].

We have given the proof of [3, Theorem 1], in which the Sherman-Morrison-Woodbury formula [3, Lemma 4] is used only to determine $\left(\Delta^{2} X\left(x^{(k)}\right)\right)^{-1}$, but in this paper we show that the proof can be simplified without using the formula. And we also present a numerical example in order to show the efficiency of the Steffensen iteration method.
2. Statement of results. Let $x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be a vector in R^{n} and D a region contained in R^{n}. Let $f_{i}(x)(1 \leqq i \leqq n)$ be real-valued nonlinear functions defined on D and $f(x)=\left(f_{1}(x), f_{2}(x), \cdots, f_{n}(x)\right)$ an n-dimensional vector-valued function. Then we shall consider a system of nonlinear equations
(2.1)

$$
x=f(x)
$$

whose solution is \bar{x}. Let $\|x\|$ and $\|A\|$ be denoted by

$$
\|x\|=\max _{1 \leq i \leq n}\left|x_{i}\right| \quad \text { and } \quad\|A\|=\max _{1 \leq i \leq n} \sum_{j=1}^{n}\left|a_{i j}\right|
$$

where $A=\left(a_{i j}\right)$ is an $n \times n$ matrix. Define $f^{(i)}(x) \in R^{n}(i=0,1,2, \ldots)$ by

$$
\begin{aligned}
& f^{(0)}(x)=x \\
& f^{(i)}(x)=f\left(f^{(i-1)}(x)\right) \quad(i=1,2, \cdots) .
\end{aligned}
$$

Put

$$
\begin{aligned}
& d^{(0, k)}=x^{(k)}-\bar{x}, \\
& d^{(i, k)}=f^{(i)}\left(x^{(k)}\right)-\bar{x} \quad \text { for } i=1,2, \cdots,
\end{aligned}
$$

and then define an $n \times n$ matrix $D\left(x^{(k)}\right)$ by

$$
D\left(x^{(k)}\right)=\left(d^{(0, k)}, d^{(1, k)}, \cdots, d^{(n-1, k)}\right)
$$

Throughout this paper, we shall assume the following five conditions (A.1)-(A.5) which are the same as those of [3].
(A.1) $f_{i}(x)(1 \leqq i \leqq n)$ are two times continuously differentiable on D.
(A.2) There exists a point $\bar{x} \in D$ satisfying (2.1).
(A.3) $\|J(\bar{x})\|<1$, where $J(x)=\left(\partial f_{i}(x) / \partial x_{j}\right)(1 \leqq i, j \leqq n)$.
(A.4) The vectors $d^{(0, k)}, d^{(1, k)}, \cdots, d^{(n-1, k)}, k=0,1,2, \cdots$, are linearly independent.
(A.5) $\quad \inf \left\{\left|\operatorname{det} D\left(x^{(k)}\right)\right| /\left\|d^{(0, k)}\right\|^{n}\right\}>0$.

Now, we consider Steffensen's iteration method

$$
\begin{equation*}
x^{(k+1)}=x^{(k)}-\Delta X\left(x^{(k)}\right)\left(\Delta^{2} X\left(x^{(k)}\right)\right)^{-1} \Delta x\left(x^{(k)}\right), \tag{2.2}
\end{equation*}
$$

where an n-dimensional vector $\Delta x(x)$, and $n \times n$ matrices $\Delta X(x)$ and $\Delta^{2} X(x)$ are given by

$$
\begin{aligned}
& \Delta x(x)=f^{(1)}(x)-x, \\
& \Delta X(x)=\left(f^{(1)}(x)-x, \cdots, f^{(n)}(x)-f^{(n-1)}(x)\right)
\end{aligned}
$$

and

$$
\Delta^{2} X(x)=\left(f^{(2)}(x)-2 f^{(1)}(x)+x, \cdots, f^{(n+1)}(x)-2 f^{(n)}(x)+f^{(n-1)}(x)\right) .
$$

In this paper, we also show the following
Theorem 1. Under conditions (A.1)-(A.5), there exists a constant M such that an estimate of the form

$$
\left\|x^{(k+1)}-\bar{x}\right\| \leqq M\left\|x^{(k)}-\bar{x}\right\|^{2}
$$

holds, provided that the $x^{(k)}$ generated by (2.2) are sufficiently close to the solution \bar{x} of (2.1).
3. Preliminaries. For the proof of Theorem 1, we need the following three lemmas given in [3]:

Lemma 1 ([3, Lemma 1]). Let A and C be $n \times n$ matrices and assume that A is invertible, with $\left\|A^{-1}\right\| \leqq K_{1}$. If $\|A-C\| \leqq K_{2}$ and $K_{1} K_{2}<1$, then C is also invertible, and $\left\|C^{-1}\right\| \leqq K_{1} /\left(1-K_{1} K_{2}\right)$.

Lemma 2 ([3, Lemma 2]). Under conditions (A.1)-(A.5), there exists a constant L_{1} such that the inequality

$$
\left\|\left(D\left(x^{(k)}\right)\right)^{-1}\right\| \leqq L_{1}\left\|d^{(0, k)}\right\|^{-1}
$$

holds for $x^{(k)}$ sufficiently close to \bar{x}.
Lemma 3 ([3, Lemma 3]). Under conditions (A.1)-(A.5), $n \times n$ matrices $\Delta X\left(x^{(k)}\right)$ and $\Delta^{2} X\left(x^{(k)}\right)$ are invertible, and there exist,constants L_{4} and L_{7} such that the inequalities

$$
\begin{align*}
& \left\|\left(\Delta X\left(x^{(k)}\right)\right)^{-1}\right\| \leqq L_{4}\left\|d^{(0, k)}\right\|^{-1}, \tag{3.1}\\
& \left\|\left(\Delta^{2} X\left(x^{(k)}\right)\right)^{-1}\right\| \leqq L_{7}\left\|d^{(0, k)}\right\|^{-1} \tag{3.2}
\end{align*}
$$

hold for $x^{(k)}$ sufficiently close to \bar{x}.
Lemmas 1 and 2 are used in proving Lemma 3. By the definition, we have

$$
\begin{align*}
& \Delta X\left(x^{(k)}\right)=(J(\bar{x})-I) D\left(x^{(k)}\right)+Y_{1}\left(x^{(k)}\right), \tag{3.3}\\
& \Delta^{2} X\left(x^{(k)}\right)=(J(\bar{x})-I) \Delta X\left(x^{(k)}\right)+Y_{2}\left(x^{(k)}\right), \tag{3.4}
\end{align*}
$$

where $Y_{1}(x)$ and $Y_{2}(x)$ are $n \times n$ matrices. By (A.1)-(A.3), we may choose constants L_{2} and L_{5} such that, for $x^{(k)}$ sufficiently close to \bar{x},

$$
\begin{align*}
& \left\|Y_{1}\left(x^{(k)}\right)\right\| \leqq L_{2}\left\|d^{(0, k)}\right\|^{2}, \tag{3.5}\\
& \left\|Y_{2}\left(x^{(k)}\right)\right\| \leqq L_{5}\left\|d^{(0, k)}\right\|^{2} . \tag{3.6}
\end{align*}
$$

Here we note that the inequality (3.1) holds with $L_{4}=L_{1} / L_{3}$ by choosing a constant L_{3} so as to satisfy

$$
1-\|J(\bar{x})\|-L_{1} L_{2}\left\|d^{(0, k)}\right\| \geqq L_{3}>0 .
$$

Similarly we obtain the inequality (3.2) with $L_{7}=L_{4} / L_{6}$ by choosing a
constant L_{6} satisfying

$$
1-\|J(\bar{x})\|-L_{4} L_{5}\left\|d^{(0, k)}\right\| \geqq L_{6}>0 .
$$

4. Proof of Theorem 1. We shall prove Theorem 1. By the definition and (A.1)-(A.3), we also have, as in § 3,

$$
\begin{equation*}
\Delta x\left(x^{(k)}\right)=(J(\bar{x})-I) d^{(0, k)}+\xi\left(x^{(k)}\right), \tag{4.1}
\end{equation*}
$$ where $\xi(x)$ is an n-dimensional vector and

$$
\begin{equation*}
\left\|\xi\left(x^{(k)}\right)\right\| \leqq L_{8}\left\|d^{(0, k)}\right\|^{2}, \tag{4.2}
\end{equation*}
$$

a constant L_{8} being suitably chosen.
We observe that, by Lemma 3, $\Delta X\left(x^{(k)}\right)$ is invertible for $x^{(k)}$ sufficiently close to \bar{x}. Then, by (3.4),

$$
\begin{equation*}
J(\bar{x})-I=\left(\Delta^{2} X\left(x^{(k)}\right)-Y_{2}\left(x^{(k)}\right)\right)\left(\Delta X\left(x^{(k)}\right)\right)^{-1} . \tag{4.3}
\end{equation*}
$$

Substituting (4.1) into (2.2) and using (4.3), it yields

$$
\begin{align*}
x^{(k+1)}-\bar{x}= & \Delta X\left(x^{(k)}\right)\left(\Delta^{2} X\left(x^{(k)}\right)\right)^{-1}\left[Y_{2}\left(x^{(k)}\right)\right. \tag{4.4}\\
& \left.\cdot\left(\Delta X\left(x^{(k)}\right)\right)^{-1} d^{(0, k)}-\xi\left(x^{(k)}\right)\right] .
\end{align*}
$$

Since $\left\|D\left(x^{(k)}\right)\right\| \leqq \sum_{i=0}^{n-1}\left\|d^{(i, k)}\right\|$, we have

$$
\left\|D\left(x^{(k)}\right)\right\| \leqq\left(\sum_{i=0}^{n-1} M_{1}^{i}\right)\left\|d^{(0, k)}\right\|,
$$

and so, from (3.3), by (A.3) and (3.5),

$$
\begin{equation*}
\left\|\Delta X\left(x^{(k)}\right)\right\| \leqq L_{9}\left\|d^{(0, k)}\right\| \tag{4.5}
\end{equation*}
$$

for a constant L_{9} chosen suitably. In the above, we have used, under conditions (A.1)-(A.3), the fact that

$$
\left\|d^{(i+1, k)}\right\| \leqq M_{1}\left\|d^{(i, k)}\right\| \quad\left(0<M_{1}<1\right)
$$

for $i=0,1,2, \cdots$. Hence, we obtain an estimate
(4.6)

$$
\left\|x^{(k+1)}-\bar{x}\right\| \leqq L_{9} L_{7}\left(L_{5} L_{4}+L_{8}\right)\left\|x^{(k)}-\bar{x}\right\|^{2},
$$

from (4.4), by (4.5), (3.2), (3.6), (3.1) and (4.2). Therefore, (4.6) shows that Theorem 1 holds with $M=L_{7} L_{9}\left(L_{4} L_{5}+L_{8}\right)$. In this way, we have proved Theorem 1, as desired.
5. Numerical example. In order to show the efficiency of the Steffensen iteration method (2.2), we consider a system of nonlinear equations, Example 5.1, which is a modification of [4, (A.82)]. The solution of Example 5.1 using the Steffensen iteration method (2.2) is presented in Table 5.1 below, together with the solutions by the iteration method [2, (1.2)] and the Aitken-Steffensen formula [2, (1.5)].

Example 5.1. $\left\{\begin{array}{l}x_{1}=f_{1}\left(x_{1}, x_{2}\right)=\frac{1}{60}\left(3 x_{1}^{3}-3 x_{1}^{2} x_{2}+6 x_{1} x_{2}^{2}+61.488\right), \\ x_{2}=f_{2}\left(x_{1}, x_{2}\right)=\frac{1}{50}\left(-x_{1}^{3}+6 x_{1}^{2} x_{2}+3 x_{2}^{3}-32.496\right) .\end{array}\right.$
The solution is $\bar{x}=\left(\bar{x}_{1}, \bar{x}_{2}\right)=(1.4,-1.0)$.
Table 5.1. Computation results for Example 5.1

Methods	Solutions
Iteration method [2, (1.2)]	$x^{(82)}=(1.3999000,-0.9999053)$
Aitken-Steffensen formula [2, (1.5)]	$y^{(32)}=(1.3999820,-0.9999861)$
Steffensen iteration method (2.2)	$x^{(4)}=(1.3999920,-0.9999936)$

$$
x^{(0)}=(0.0,0.0)
$$

The author would like to express his hearty thanks to Prof. H. Mine of Kyoto University for many valuable suggestions.

References

[1] P. Henrici: Elements of Numerical Analysis. John Wiley, New York (1964).
[2] T. Noda: The Aitken-Steffensen formula for systems of nonlinear equations. Sûgaku, 33, 369-372 (1981) (in Japanese).
[3] -: The Steffensen iteration method for systems of nonlinear equations. Proc. Japan Acad., 60A, 18-21 (1984).
[4] M. Urabe: Nonlinear Autonomous Oscillations. Academic Press (1967).

