76. A Note on p-adic Etale Cohomology

By Masato Kurihara
Department of Mathematics, Faculty of Science,
University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. A., Sept. 14, 1987)

1. Let X be a projective smooth scheme over a complete discrete valuation ring A of mixed characteristics ($0, p$). In [2], Fontaine and Messing studied the relation between the p-adic etale cohomology of the generic fiber $H_{e t}^{*}\left(X_{\bar{\eta}}\right)=H_{e t}^{*}\left(X_{\eta} \otimes_{\bar{\eta}}, Z_{p}\right)(\bar{\eta}$ is an algebraic closure of η) and the crystalline cohomology of the special fiber $H_{c r y s}^{*}\left(X_{s}\right)$. In this article, we consider not $\operatorname{Gal}(\bar{\eta} / \eta)$-representation $H_{e t}^{*}\left(X_{\bar{\eta}}\right)$, but $H_{e t}^{*}\left(X_{\eta}\right)$ itself and study this cohomology group by using the syntomic cohomology introduced in [2]. Detailed studies containing the complete proof will appear elsewhere.

We will use the following notation : X is a projective, smooth and geometrically connected scheme over A of dimension d as above, and $Y=X_{s}$ (resp. X_{η}) is the special fiber (resp. the generic fiber), and $i: Y \rightarrow X$ (resp. $j: X_{\eta} \rightarrow X$) is the canonical morphism. We assume that the residue field F of A has a finite p-base of order g (i.e. $\left[F: F^{p}\right]=p^{g}$).

Fontaine and Messing [2] defined the syntomic site $X_{s y n}$ and a sheaf S_{n}^{r} on $X_{s y n}$ in order to link the etale cohomology to De Rham cohomology. This sheaf S_{n}^{r} is regarded as an "ideal" etale sheaf $Z / p^{n}(r)$ on X. Namely, the group $H^{q}\left(X_{s y n}, S_{n}^{r}\right)$ is expected to play a role of " $H^{q}\left(X_{e t}, Z / p^{n}(r)\right.$)" which cannot be defined directly. In [2], a global cohomology $H^{q}\left(X_{\eta}, Z_{p}\right)$ was studied under the assumption $e_{A}=\operatorname{ord}_{A}(p)=1$. Our aim in this paper is a local study of p-adic etale vanishing cycles $i^{*} R j_{*} Z / p^{n}(r)$ when e_{A} may not be 1. Put $\mathcal{S}_{n}(r)=i^{*} R \pi_{*} S_{n}^{r} \in D\left(Y_{e t}\right)$ as in [3] where $\pi: X_{s y n} \rightarrow X_{e t}$ is the canonical morphism. Fontaine and Messing defined a morphism $S_{n}^{r} \rightarrow i^{*} j_{*}^{\prime} Z / p^{n}(r)$ (where $j^{\prime}: X_{n e t} \rightarrow X_{s y_{n-e t}}, i^{\prime}: X_{s y_{n}} \rightarrow X_{s y_{n-e t}}$) in [2] 5, which induces $\mathcal{S}_{n}(r)$ $\rightarrow i^{*} R j_{*} \boldsymbol{Z} / p^{n}(r)$. We study the difference between $\mathcal{S}_{n}(r)$ and $i^{*} R j_{*} \boldsymbol{Z} / p^{n}(r)$.

Theorem. If $r<p-1$, there exists a distinguished triangle $\mathcal{S}_{n}(r) \longrightarrow \tau_{\leq r} i^{*} R j_{*} Z / p^{n}(r) \longrightarrow W_{n} \Omega_{Y}^{r-1}[-r]$.
where $W_{n} \Omega_{Y \log }^{r-1}$ is the logarithmic Hodge-Witt sheaf. In particular, if $r \geq d(=\operatorname{dim} X)+g\left(=\operatorname{ord}_{p}\left[F: F^{p}\right]\right)$, we have a long exact sequence

$$
\begin{aligned}
& \longrightarrow H^{q}\left(X_{s y n}, S_{n}^{r}\right) \longrightarrow H^{q}\left(X_{\eta e t}, \boldsymbol{Z} / p^{n}(r)\right) \longrightarrow H^{q-r}\left(Y_{e t}, W_{n} \Omega_{Y}^{r-1}\right) \longrightarrow \\
& H^{q+1}\left(X_{s y n}, S_{n}^{r}\right) \longrightarrow H^{q+1}\left(X_{\eta e t}, \boldsymbol{Z} / p^{n}(r)\right) \longrightarrow H^{q-r+1}\left(Y_{e t}, W_{n} \Omega_{Y l o g}^{r-1}\right) \longrightarrow .
\end{aligned}
$$

In the case $e_{A}=\operatorname{ord}_{A}(p)=1$ and $r \geq d+g$, considering

$$
\mathcal{S}_{n}(r) \simeq D R\left(X \otimes \boldsymbol{Z} / p^{n}\right)[-1]
$$

($D R(T)$ means the De Rham complex $\Omega_{T / Z}$), we have
Corollary 1. Suppose that $e_{A}=\operatorname{ord}_{A}(p)=1$ and $d+g \leq r<p-1$. Then,
we have a long exact sequence
$\cdots \longrightarrow H_{D R}^{q-1}\left(X \otimes \boldsymbol{Z} / p^{n}\right) \longrightarrow H^{q}\left(X_{\eta e t}, \boldsymbol{Z} / p^{n}(r)\right) \longrightarrow H^{q-r}\left(Y_{e t}, W_{n} \Omega_{Y \operatorname{loq}}^{r-1}\right) \longrightarrow \cdots$.
Corollary 2. Suppose that $e_{A}=1$ and the residue field F of A is finite and $d<p-1$. Then, we have a long exact sequence $\cdots \longrightarrow H^{q}\left(Y_{e t}, \boldsymbol{Z} / p^{n}\right) \longrightarrow H^{q}\left(X_{\eta e t}, \boldsymbol{Z} / p^{n}\right) \longrightarrow H_{c r y s}^{q-1}\left(\boldsymbol{Y} / W_{n}\right) \longrightarrow \cdots$. where $W_{n}=W_{n}(F)$ and $H_{c r y s}^{*}\left(Y / W_{n}\right)$ is the crystalline cohomology of Y.

This can be seen from Corollary 1 by considering the duality. This Corollary 2 gives another proof of the following result [4] Prop. 7 in the case $e_{A}=1$.

Corollary 3. Every abelian etale covering of X_{η} comes from some abelian etale covering of Y and some abelian extension of η.

This follows from corollary 2 immediately. In fact, since H^{2} (Spec $F_{e t}$, $\left.\boldsymbol{Z} / p^{n}\right)=0$, we have a diagram of exact sequences

Therefore, the following is surjective. $\quad H^{1}\left(Y, \boldsymbol{Z} / p^{n}\right) \oplus H^{1}\left(\eta, \boldsymbol{Z} / p^{n}\right) \rightarrow$ $H^{1}\left(X_{n}, \boldsymbol{Z} / p^{n}\right)$.
Q.E.D.

Remark. The author gave an explicit definition of the homomorphism $H_{e t}^{1}\left(\eta, Z / p^{n}\right) \rightarrow W_{n}(F)$ in a general situation (F is arbitrary) [5] for a henselian discrete valuation field η with $e_{A}=1$.
2. We review the description of $\mathcal{S}_{n}(r)$ in [3]. We take a complete discrete valuation ring $A_{0} \subset A$ such that $e_{A_{0}}=1$ and the residue field of A_{0} is isomorphic to $F, A_{0} / p \leftrightarrows F$. (The existence of such a ring follows from [0] IX §2 Th. 1.) Furthermore, take a closed immersion $X \rightarrow Z$ over A_{0} where Z is smooth over A_{0} and has a Frobenius endomorphism f, which means $\mathrm{f} \bmod p$ is the absolute Frobenius of $\boldsymbol{Z} \otimes \boldsymbol{Z} / p$. Denate $X_{n}=X \otimes \boldsymbol{Z} / p^{n}$ and $Z_{n}=Z \otimes Z / p^{n}$ for $n \geq 1$, and let $D_{n}=D_{X_{n}}\left(Z_{n}\right)$ be the PD. envelope and $J_{D_{n}}$ be the ideal of D_{n} corresponding to X_{n}, and $J_{D_{n}}^{[r]}$ its r-th divided power for $r \geq 1$. For $r \leq 0, J_{D_{n}}^{[r]}$ is defined to be $\mathcal{O}_{D_{n}}$. We define $\mathcal{G}_{D_{n}}^{[r]}$ by the complex of sheaves on $Y_{e t}$;

$$
J_{D_{n}}^{[r]} \longrightarrow J_{D_{n}}^{[r-1]} \otimes_{\mathcal{O}_{D_{n}}} \Omega_{Z_{n}}^{1} \longrightarrow J_{D_{n}}^{[r-2]} \otimes_{\mathcal{O}_{D_{n}}} \Omega_{Z_{n}}^{2} \longrightarrow \cdots
$$

Assume $r<p-1$. For a Frobenius morphism f of $Z, \mathrm{f}_{r}: \mathcal{G}_{D_{n}}^{[r]} \rightarrow \mathcal{G}_{D_{n}}^{[0]}$ is defined by " $p^{-r} \mathbf{f}$ ". Then, the complex $\mathcal{S}_{n}(r)$ is isomorphic to the mapping fiber of $\mathrm{f}_{r}-1: \mathcal{G}_{D_{n}}^{[r]} \rightarrow \mathcal{G}_{D_{n}}^{[0]}$. Explicitly, $\mathcal{S}_{n}(r)$ is as follows.

$$
\left.\begin{array}{c}
\cdots \xrightarrow{\longrightarrow}\left(J_{D_{n}}^{[r-i]} \otimes \Omega_{Z_{n}}^{i}\right) \oplus\left(\mathcal{O}_{D_{n}} \otimes \Omega_{Z_{n}}^{i-1}\right) \longrightarrow \tag{2.1}\\
\\
(x, y) \longmapsto \\
\hline
\end{array} d x,\left(\mathrm{f}_{r}-1\right)(x)-d y\right) .
$$

Note that this complex is independent of the choice of Z and f in $D\left(Y_{e t}\right)$.
3. For the proof of Theorem, since $\mathscr{G}^{q}\left(\mathcal{S}_{n}(r)\right)=0$ for $q>r$, it suffices to show that $\mathcal{S}_{n}(r) \rightarrow i^{*} R j_{*} \boldsymbol{Z} / p^{n}(r)$ induces an isomorphism

$$
\begin{equation*}
\mathscr{A}^{q}\left(\mathcal{S}_{n}(r)\right) \xrightarrow{\sim} i^{*} R^{q} j_{*} Z / p^{n}(r) \quad \text { if } q<r<p-1 \tag{3.1}
\end{equation*}
$$

and an exact sequence

$$
\begin{equation*}
0 \longrightarrow \mathcal{H}^{q}\left(\mathcal{S}_{n}(q)\right) \longrightarrow i^{*} R^{q} j_{*} \boldsymbol{Z} / p^{n}(q) \longrightarrow W_{n} \Omega_{\bar{Y}}^{q-1} \log \longrightarrow 0 \tag{3.2}
\end{equation*}
$$

Put $M_{n}^{q}=i^{*} R^{q} j_{*} \boldsymbol{Z} / p^{n}(q)$ and denote by $U^{0} M_{n}^{q}$ the subsheaf of M_{n}^{q} generated locally by $\left\{a_{1}, \cdots, a_{q}\right\}$ with $a_{1}, \cdots, a_{q} \in i^{*} \mathcal{O}_{X}^{*}$ where $\left\{a_{1}, \cdots, a_{q}\right\}$ means the "symbol" ([1] § 1). In [1], an exact sequence $0 \rightarrow U^{0} M_{n}^{q} \rightarrow M_{n}^{q} \rightarrow W_{n} \Omega_{V}^{q-1} \log \rightarrow 0$ was obtained. The exact sequence (3.2) is a consequence of an isomorphism (3.3)

$$
\mathscr{H}^{q}\left(\mathcal{S}_{n}(q)\right) \xrightarrow{\sim} U^{0} M_{n}^{q} .
$$

In order to prove (3.1) and (3.3), by a standard argument, we may assume $n=1$.
4. In this section, in order to prove (3.1) and (3.3), we study the structure of $\mathscr{A}^{q}\left(\mathcal{S}_{1}(r)\right)$ for $q \leq r<p-1$. Our aim is to define some complexes $g r^{i} \mathcal{S}_{1}(r)$ whose cohomology groups $\mathscr{G}^{q}\left(g r^{i} \mathcal{S}_{1}(r)\right)$ give subquotients of $\mathcal{G}^{q}\left(\mathcal{S}_{1}(r)\right)$ and to compute these cohomology groups $\mathscr{F}^{q}\left(g r^{i} \mathcal{S}_{1}(r)\right)$.

Since our problem to prove (3.1) and (3.3) is local, we may assume X is a projective space \boldsymbol{P}_{A}^{m}. In the following, we will use the explicit description of $\mathcal{S}_{1}(r)$ (2.1) and the same notation as in 2. Take A_{0} such that $e_{A_{0}}=1$ and A / A_{0} is totally ramified and take a prime element π of A. Let $f(T)$ $\in A_{0}[T]$ be the monic minimal polynomial of π over A_{0}. Take $\mathrm{Z}=\boldsymbol{P}_{A_{0}}^{m}[T]$ and define a closed immersion $X \rightarrow Z$ by $f(T)$, and define a Frobenius f of Z such that $\mathrm{f}(T)=T^{p}$. A filtration of $\mathscr{H}^{q}\left(\mathcal{S}_{1}(r)\right)$ is defined by using these Z and T. We need some more notation. For $h \in \boldsymbol{Q}$ and an ideal I of $\mathcal{O}_{D_{1}}$, $T^{h} I$ is an ideal generated by $T^{m} I$ such that $m \geq h$ and $m \in N$. For $i \in N$ and $s \in Z$, an ideal $J_{i}^{[s]}$ of $\mathcal{O}_{D_{1}}$ is defined by $J_{i}^{[s]}=\left(T^{i} \mathcal{O}_{D_{1}}+J_{D_{1}}^{[p]}\right) \cap\left(T^{(i p-1)} J_{D_{1}}^{[s]}+J_{D_{1}}^{[p]}\right)$. For an ideal I of $\mathcal{O}_{D_{1}}, I \otimes\left(\Omega_{Z_{1}}^{q}\right)^{\prime}$ is the subsheaf of $\mathcal{O}_{D_{1}} \otimes \Omega_{Z_{1}}^{q}$ generated by $I \otimes \Omega_{Z_{1}}^{q}$ and the elements of the form $a \cdot d \log T$ with $a \in I \otimes \Omega_{Z_{1}}^{q-1}$.

For $i \geq 0$, a complex $U^{i} \mathcal{G}_{D_{1}}^{[r]}$ is defined as follows.

$$
\begin{equation*}
U^{i} \mathcal{F}_{D_{1}}^{[r]}: J_{i}^{[r]} \longrightarrow J_{i}^{[r-1]} \otimes\left(\Omega_{Z_{1}}^{1}\right)^{\prime} \longrightarrow J_{i}^{[r-2]} \otimes\left(\Omega_{Z_{1}}^{2}\right)^{\prime} \longrightarrow \cdots \tag{4.1}
\end{equation*}
$$

As in the case $\mathcal{G}_{D_{n}}^{[r]}$, we can define $\mathrm{f}_{r}=" p^{-r} \mathrm{f}^{\prime \prime}: U^{i} \mathcal{G}_{D_{1}}^{[r]} \longrightarrow U^{i} \mathcal{G}_{D_{1}}^{[0]}$ for $r<p-1$. Moreover, we define $g r^{i} \mathcal{g}_{0_{1}}^{[r]}$ by an exact sequence

$$
0 \longrightarrow U^{i+1} g_{D_{1}}^{[r]} \longrightarrow U^{i} g_{D_{1}}^{[r]} \longrightarrow g r^{i}{\underset{D}{D_{1}}}_{[r]} \longrightarrow 0 .
$$

Then, $U^{i} \mathcal{S}_{1}(r)$ (resp. $g r^{i} \mathcal{S}_{1}(r)$) is defined to be the mapping fiber of $\mathrm{f}_{r}-1$: $U^{i} g_{D_{1}}^{[r]} \longrightarrow U^{i} \mathcal{G}_{D_{1}}^{[0]}\left(r e s p . f_{r}-1: g r^{i} g_{D_{1}}^{[r]} \longrightarrow g r^{i} \mathcal{G}_{D_{1}}^{[0]}\right)$.

The following can be seen by an explicit calculation.
Lemma (4.2). For $i \geq 0$ and $q \geq 0, \mathscr{H}^{q}\left(U^{i+1} \mathcal{S}_{1}(r)\right) \rightarrow \mathscr{H}^{q}\left(U^{i} \mathcal{S}_{1}(r)\right)$ is injective.

By this lemma, we can regard $\mathscr{H}^{q}\left(U^{i} \mathcal{S}_{1}(r)\right)$ as a filtration of $\mathscr{H}^{q}\left(\mathcal{S}_{1}(r)\right)$. Put $L_{1}^{q}(r)=\mathcal{H}^{q}\left(\mathcal{S}_{1}(r)\right), U^{i} L_{1}^{q}(r)=\mathcal{F}^{q}\left(U^{i} \mathcal{S}_{1}(r)\right)$, and $g r^{i} L_{1}^{q}(r)=U^{i} L_{1}^{q}(r) / U^{i+1} L_{1}^{q}(r)$. We shall calculate $g r^{i} L_{1}^{q}(r)$. By Lemma (4.2), we have $g r^{i} L_{1}^{q}(r)=$ $\mathcal{I}^{q}\left(g r^{i} \mathcal{S}_{1}(r)\right)$.

Proposition (4.3). Suppose $0 \leq q \leq r<p-1$ and $i \geq 0$, and put $e=e_{A}$.

1) If $i<e p(r-q) /(p-1)$ or $i \geq e p(r-q+1) /(p-1)$, $g r^{i} L_{1}^{q}(r)=0$.
2) The case $i=e p(r-q) /(p-1)$. (This case only occurs when $e(r-q)$ is divisible by $p-1$.)

$$
g r^{i} L_{1}^{q}(r)=\left\{\begin{array}{l}
\Omega_{Y}^{q} \log ^{2} \quad \text { if } q=r \\
\Omega_{Y \log }^{q} \oplus \Omega_{Y \log }^{q-1}
\end{array} \text { if } q<r\right.
$$

3) Assume $e p(r-q) /(p-1)<i<e p(r-q+1) /(p-1)$.
i) If i is not divisible by $p, g r^{i} L_{i}^{q}(r)=\Omega_{Y}^{q-1}$.
ii) If i is divisible by $p, g r^{i} L_{1}^{q}(r)=B \Omega_{Y}^{q} \oplus B \Omega_{Y}^{q-1}$ where $B \Omega_{Y}^{j}=$ Image ($d: \Omega_{Y}^{j-1} \rightarrow \Omega_{Y}^{j}$).

On the other hand, the structure of $g r^{i} M_{1}^{q}$ is determined in [1] Cor. (1.4.1). The isomorphism (3.3) $L_{1}^{q}(q) \leftrightarrows U^{0} M_{1}^{q}$ is verified by comparing $g r^{i} L_{1}^{q}(q)$ with $g r^{i} M_{1}^{q}$. (The compatibility of the symbol maps from Milnor K-sheaf to $L_{1}^{q}(q)$ ([3] I § 3) and to M_{1}^{q} ([1] §1) shows that the map $L_{1}^{q}(q) \rightarrow M_{1}^{q}$ induces $g r^{i} L_{1}^{q}(q) \rightarrow g r^{i} M_{1}^{q}$.)

Next, we show (3.1). Let ζ_{p} be a primitive p-th root of unity, $G=\operatorname{Gal}\left(A\left[\zeta_{p}\right] / A\right)$ be the Galois group of $A\left[\zeta_{p}\right] / A$, and \bar{M}_{1}^{q} be the sheaf obtained by the base change $\operatorname{Spec} A\left[\zeta_{p}\right] \rightarrow S p e c A$. We have to show the bijectivity of

$$
L_{1}^{q}(r) \xrightarrow{\sim} i^{*} R^{q} j_{*} Z / p(r) \simeq \bar{M}_{1}^{q}(r-q)^{G} .
$$

This is also proved by comparing the filtrations using Prop. (4.3) and the structure theorem on \bar{M}_{1}^{q} in [1]. (The above induces $U^{i} L_{1}^{q}(r) \rightarrow U^{i n-e^{\prime}(r-q) h} \bar{M}_{1}^{q}$ where $h=\# G$ and $e^{\prime}=e_{A} p /(p-1)$.)

Remark. The definition of $g r$-complex was suggested by K. Kato. The author gave a different proof of Theorem in his master's thesis, which uses a relation between Milnor K-groups and differential modules.

References

[0] Bourbaki, N.: Algèbre Commutative. Chap. 8 et 9. Masson, Paris (1983).
[1] Bloch, S. and Kato, K.: p-adic etale cohomology. Publ. Math. IHES, 63, 107-152 (1986).
[2] Fontaine, J.-M. and Messing, W.: p-adic periods and p-adic etale cohomology, MSRI (1986) (preprint).
[3] Kato, K.: On p-adic vanishing cycles (Application of ideas of Fontaine-Messing). Adv. Studies in Pure Math., 10, 207-251 (1987).
[4] Kato, K. and Saito, S.: Unramified class field theory of arithmetical surfaces. Ann. of Math., 118, 241-275 (1983).
[5] Kurihara, M.: Abelian extensions of absolutely unramified local fields with general residue fields (1987) (preprint).

