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Harmonic Analysis on Negatively Curved
Manifolds. I

By Hitoshi AtAI
Mathematical Institute, T6hoku University

(Communicated by K6saku YOSIDA, M. ft. A., Sept. 14, 1987)

Let M be a complete, simply connected, n-dimensional Riemannian
manifold of the sectional curvature K satisfying --b<_K<_-a for some
constants a, b>0. The basic aim of this series of papers is to generalize
the harmonic analysis on the open unit disc to the manifold M. In the first
paper we treat Hardy spaces H", the space BMO and their probabilistic
counterparts defined on the sphere at infinity S (co) of M. Our research will
deeply depends on recent remarkable works of M. T. Anderson, R. Schoen
and D. Sullivan ([1], [2], [6]).

1o Hp and BMO. Throughout the paper we fix a point o in M. Let
=MUS(oo). For p e M and x e/, we denote by ’, the uniquely de-
termined unit speed geodesic ray with ’,(0)=p and ’,(t)=x for some
t e (0, +oo], and by #,,(s) the tangent vector of ’,. at s. Given/>0, let
C(p, x,/) be the set {Q e M" (,(0), ,(0))</}, where (v, w) is the
angle between v and w in the tangent space at p. For simplicity, we put
Q(t)=’0,(t), C(Q, t)=C(Q(t), Q, /4) and zI(Q, t)=C(Q, t)S(oo), for Q e
S(co). We call zI(Q, t) a surface ball.

Let z/ be the Laplace-Beltrami operator on M. A function f on M is
hrmonic in DM, by definition, if z/f(x)=0, x e D. For x e M, let d
be the harmonic measure relative to x and M, and put do=d(o. If f e L"
(=L(S(oo), do)) (1<_t0<_ oo), then we denote by f the harmonic extension

of f, i.e. f(x)=ff(Q)do(Q) when x e M, and f(x)=f(x) when x e S(oo).

Let N(f) be the nontangential maximal function of f, that is, N(f)(Q)=
sup{If(z)l z e F(Q)},. Q e S(co), where F(Q)-- {x e M Q e C(x, ’o,x(+ co),
/4) S(oo)}. The set F(Q) is an analogue of Stoltz domains. Hardy spaces
on S(co) are defined by HP--{feL
where g II (I- g IPdo)TM, for every measurable function g on S (oo).

From a modification of the proof of [2, Theorem 7.3], it follows that
H=L, 1 <p<_ co, but, in general, H is a proper subspace of L. C. Feffer-
man’s duality theorem asserts that the dual space of H on R is the space
BMO. In our context, the space BMO is defined as follows" For fe Lx, let

IIf]l. =sup( oA); f(q)- o(A---lfdoIdco(q).Ais a surface ball} and BMO
={fe L "[[f[[,<+co}.

One of our main results is the following"
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Theoreml. (1) For every f e L and g e BMO,

where C is a constant depending only on n and curvature bounds.
2 ) Suppose M satisfies the following condition (C)"

For every Q e S(c), $>0 and z e C(Q, t),(C)
(zl(ro,(+oo) t)zl(Q, t):/:.

Then for every continuous linear functional F on H, there exists an

element g of BMO such that F(f)-- I fgdoo (f e L2).

Moreover, the norm of F is equivalent to g
Remark. It is easy to see that if M is rotationally symmetric at o,

then M satisfies the condition (C).
To prove Theorem 1 we use probabilistic Hardy spaces which will be

studied in the next section.
2. Probabilistic version of H and BMO. We will investigate pro-

babilistic H and BMO. For notations and terminologies of probability
theory concepts, the reader is referred to Ikeda and Watanabe [4] and
Sullivan [6]. Let {P} be a zl-diffusion and put-(W(M)), t e [0, o].
We set P=Po, E[ ]=E0[ and E[ l]=E0[ [t], t_0. For w e W(M) and

f e L, let X(w)---w(t) and Mft-f(Xt), t_O. Probabilistic versions of H,
0p_c, and BMO are defind by

Hr:{f e L []fl ,=(E[suptlMftl]/<
and

BMO={feL" f].,r=SUp
Theorem 2. (1) HCHr, 0’p__c, and BMOcBMO. Moreover,

If I,,r__C]lf (Op__c) and ]If I.,_cllf ]., where C, is a constant
depending only on n, a, b and p, and c on n, a and b.

(2) If M satisfies the condition (C), then H=H, l_p_c, and

BMO=BMOr. Norms InP and III. are equivalen[ to I,r and
respectively.

:o Spaces of homogeneous type. In order to prove Theorems 1 and
2, we give a variant of the notion of space of homogeneous type introduced
by Coifman and Weiss [3]. Our method does not depend on metric and is
adapted to the study o analysis on S(c). Let W be a topological space
nd/ be a positive Borel measure on W. Suppose for every Q e S(c) and
t e R, there exists an open neighborhood z/(Q) (called surface ball) o Q
satisfying

( 1 ) W=lim_z/t(Q) D z/r(Q) D r/(Q) D limt/z/(Q) {Q}, Q e W,
r e R, s0, where AB means that A contains the closure of B

(2) there is a constant k0 such that for every Q, R eW and
r e R, A(Q) A(R) =/= implies z/_(Q) z/r(R)

( 3 ) 0 /(z/r(Q)) + c or every A(Q)
4 ) there exists a constant C such that/(A_(Q))_ C[(r(Q)) Jor every

a(Q).
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It is easy to check that if (W, Z) is a space of homogeneous type with
a quasi-metric p, then balls {x e W" p(x, Q)e-}, Q e W, r e R, satisfy con-
ditions (1)--(4). In addition to this, by Anderson and Schoen [2], the con-
ditions (1)--(4)are satisfied by surface balls in S(c) and every harmonic
measure. They also pointed out that Vitali type covering lemma holds
good on S(c). We note that the covering lemmas of Vitali and Whitney
type can be proved in the more general space (W,/; {At(Q)}). These facts
imply that the atomic Hardy space theory introduced by Coifman and
Weiss [3] is carried out in our setting.

Let 0<p_l. A function a e L(/) is a p-atom if I ad/=O and there is

a surface ball /containing the support of a, with l[a 115 --1//(/). Let H=
{heL’llhlI,t=inf{,7:o]Rl’h=7:oRa;, R;eR and a; is 1-atom, ]=0, 1,
}+ c}. Here we regard inf as + o and g(W)- as a 1-atom if p(W)
c. Define BMO on W by the same way as BMO on S(c).
Theorem 3. The dual space of Ht is identified with BMO.
If (W, p)=(S(c), w), we obtain the ollowing"
Theorem 4. There exists a constant C depending only on n, a and b

such that Ilflll, t-CI]flll for every f e L. Moreover, if M satisfies the
condition (C), then HI=Ht and norms II1, and I11 are equivalent.

4. Sketch of proofs of Theorems 1, 2 and 4. We will use C1, C,
to denote positive constants depending only on n, a and b. A difficult part
of Theorem 1 is proved by applying a result in martingale theory"

(by martingale theory)
where C is a universal constant. In order to prove the remainder part we
will show the following estimate of the Poisson kernel K( )"

Lemma. There exists ro 0 satisfying the following" Let N be a
positive integer and r be a number larger than Nro+l. Let {m}j=l,...,
(kN) be any sequence such that

(1) 0=m... mr--1;
(2) m/-m_ro (]=0, ..., k-l).

Then IlK(x, Q)/K(x, Q0)]-IIC2-, for every Qo e S(c) and Q e A(Qo, r)
and x e M-C(Qo(r-m), Qo, /4).

Note that the estimate of Lemma is originally due to Jerison and
Kenig [5] in the case o Euclidean domains. Now, we assume the condition

(C). Then rom this lemma and the condition (C) we can prove that
gC for every atom A. Hence we obtain that HcH under the condition

(C). Remembering Theorem 3 and inequalities obtained in this section we

can prove Theorems I and 4 by using functional analysis. Further, Theorem
1 and a duality argumeat imply that HHIr and BMOBMOr, 2rom
which Theorem 2 ollows.

A detailed proo will be published elsewhere.
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