91. On a Conjecture of Ono on Real Quadratic Fields

By Ming-Guang Leu
Department of Mathematics, The Johns Hopkins University
(Communicated by Shokichi Iyanaga, m. J. A., Oct. 12, 1987)

Let k be a quadratic field. We shall denote by Δ_{k}, M_{k}, h_{k} and χ_{k}, the discriminant, the Minkowski constant, the class number and the Kronecker character, respectively. Consider the following set

$$
S_{k}=\left\{p \text {, rational prime } ; p \leqq M_{k}, \chi_{k}(p) \neq-1\right\}
$$

It is easy to see that the ideal class group H_{k} of k is generated by the classes of prime ideals $\mathfrak{p}, \mathfrak{p} \mid p, p \in S_{k}$. In particular, we have

$$
\begin{equation*}
S_{k}=\phi \Longrightarrow h_{k}=1 . \tag{1}
\end{equation*}
$$

If k is imaginary, it is easy to prove the stronger relation :

$$
\begin{equation*}
S_{k}=\phi \Longleftrightarrow h_{k}=1 .^{1)} \tag{2}
\end{equation*}
$$

However, if k is real, (2) is not always true; e.g. $h_{k}=1$ but $S_{k}=\{2\}$ for $k=\boldsymbol{Q}(\sqrt{6})$. In view of the celebrated conjecture of Gauss on the class number of real quadratic fields, it is interesting to determine all k 's such that $S_{k}=\phi$. Recently Prof. Ono conjectured that these must be exactly the following 11 fields $k=\boldsymbol{Q}(\sqrt{m})$ with $m=2,3,5,13,21,29,53,77,173,293$ and 437.

In this paper, we shall prove the following :
Theorem. There are at most 12 real quadratic fields k such that S_{k} $=\phi$.

In the sequel, m will denote a square-free natural number $\geqq 5$ and $h(m)$ the class number h_{k} with $k=\boldsymbol{Q}(\sqrt{m}) .^{2}$) We remind the reader that $M_{k}=\sqrt{\Delta_{k}} / 2$ and that

$$
\chi_{k}(p)= \begin{cases}\left(\frac{\Delta_{k}}{p}\right) & \text { if } p \neq 2, p \nmid \Delta_{k}, \\ (-1)^{\left(\Delta_{k}^{2}-1\right) / 8} & \text { if } p=2,2 \nmid \Delta_{k}, \\ 0 & \text { if } p \mid \Delta_{k} .\end{cases}
$$

Since $\chi_{k}(2)=0$ for $m \equiv 2,3(\bmod 4)$ and $\chi_{k}(2)=1$ for $m \equiv 1(\bmod 8), S_{k}$ contains 2, i.e. $S_{k} \neq \phi$. So from now on we can assume that $m \equiv 5(\bmod 8)$. Under this assumption, we shall try to determine k for which $S_{k}=\phi$.

The theorem obviously follows from the following two Propositions (A), (B).

Proposition (A). There exists at most one $m \geqq e^{16}$ with $S_{k}=\phi$.
Proposition (B). If $S_{k}=\phi$ and $m<e^{16}$, then $m=2,3,5,13,21,29,53,77$, 173, 293, 437.

1) The relation (2) is independent of deep results such as [1], [3].
2) Clearly, $S_{k}=\phi$ for $m=2$ or 3 .

The proof of Proposition (B) is obtained by the table 1 of [2] and the following table.

Table ($m=p_{1} p_{2}, p_{1}, p_{2}$: prime)

In the column r_{0} of the table, the smallest odd prime $r_{0} \leqq M_{k}$ such that $\chi_{k}\left(r_{0}\right) \neq-1$ is given.

The proof of Proposition (A) follows from the following three lemmas together with Tatuzawa's lower bound for $L\left(1, \chi_{k}\right)$ ([4]).

Lemma 1. If $S_{k}=\phi$, then either $m=p$ or $m=p_{1} p_{2}$, where p, p_{1}, p_{2} are primes.

Proof. Suppose $m=p_{1} p_{2} p_{3} \cdots p_{n}, n \geqq 3$, where p_{i} is prime for $i=1,2$, \cdots, n. Without loss of generality, let $p_{1}=\min \left\{p_{1}, p_{2}, \cdots, p_{n}\right\}$. Then we have $p_{1}^{2}<p_{1} p_{2} p_{3} \cdots p_{n} / 4$ which implies that $p_{1} \leqq M_{k}$. Since $\chi_{k}\left(p_{1}\right)=0$, so $p_{1} \in S_{k}$ and we have $S_{k} \neq \phi$,
Q.E.D.

Lemma 2. If $m=a^{2}+b^{2}$ with positive integers a, b, and $S_{k}=\phi$, then $m=q^{2}+4$ where q is prime or $1 .{ }^{3)}$

Proof. For $m=5$, since $M_{k}<2$, we have $S_{k}=\phi$ and $q=1$. Assume that $m>5$.

Case 1. If $b=1$, then a is even and $m>a^{2}=4(a / 2)^{2}$. Since $1<a / 2$ $<\sqrt{m} / 2=M_{k}$ and $a / 2$ is odd as $m \equiv 5(\bmod 8)$, there exists a prime $r \leqq M_{k}$ such that $r \mid a / 2$. This implies that $\chi_{k}(r)=(m / r)=\left(\Delta_{k} / r\right)=1$, i.e. $r \in S_{k}$.

Case 2. If $b \neq 1$, we may assume that a is even and b is odd. Then, we have a $/ 2<M_{k}$.
(I) If $a / 2 \neq 2^{s}, s \geqq 0$, then there exists a prime r such that $r \mid a / 2$, which implies, as above, that $r \in S_{k}$.
(II) If $a / 2 \neq 2^{s}, s \geqq 0$, then we consider two cases separately. (a) If
3) Lemma 2 can be applied to the case $m=p$ because $p \equiv 1(\bmod 4)$.
b is not a prime number, then there exists a prime r such that $b=r t, t \geqq 3$. We have $r<M_{k}$, which implies again that $r \in S_{k}$. (b) If $b=q$ is prime, then

$$
m=\left\{\begin{array}{l}
2^{2}+q^{2} \\
\left(2^{s}\right)^{2}+q^{2}, \quad \text { with } \quad s>1
\end{array}\right.
$$

Since $m \equiv 5(\bmod 8)$, we must have $m=2^{2}+q^{2}$,
Q.E.D.

Lemma 3. If $m=p_{1} p_{2}$ and $S_{k}=\phi$, then $p_{1}-p_{2}= \pm 4$ and $p_{i} \equiv 3(\bmod 4)$, $i=1,2$.

Proof. If $p_{i} \equiv 1(\bmod 4)$ for $i=1,2$, then $m=p_{1} p_{2}=a^{2}+b^{2}$, where a and b are both positive integers. By Lemma 2, we have $m=4+q^{2}$, where q is prime. By Theorem 1 of [5], m is prime. This contradicts our assumption on m. Now, without loss of generality, we may assume that $p_{2}>p_{1}$. Suppose that $p_{2}-p_{1}>4$. We divide our argument into two cases.

Case 1. $p_{1}=8 n+3, p_{2}=8(n+s)+7$, where $n \geqq 0$ and $s \geqq 1$ are integers. Then we have

$$
\begin{aligned}
m=p_{1} p_{2} & =(8 n+3)(8(n+s)+7) \\
& =(8 n+3)(8 n+3+8 s+4)=(8 n+3)^{2}+4(8 n+3)(2 s+1)
\end{aligned}
$$

Since $m / 4>(8 n+3)(2 s+1)$, we have $S_{k} \neq \phi$, because for the smallest prime factor r of either $(8 n+3)$ or $(2 s+1)$, we have $r \leqq M_{k}$ and $\chi_{k}(r)=1$.

Case 2. $\quad p_{1}=8 n+7, p_{2}=8(n+s)+3$, where $n \geqq 0$ and $s \geqq 2$ are integers. By a similar argument as in Case 1, we have $S_{k} \neq \phi$, Q.E.D.

Proof of Proposition (A). For the case where $m=p$ is prime, by Lemma 2, by (1) and by Theorem 1 of [2], there exists at most one $m \geqq e^{16}$ with $S_{k}=\phi$. A similar argument as in Theorem 1 of [2] works for $m=p_{1} p_{2}$, where p_{1} and p_{2} are primes of the form $4 n+3, n \geqq 0$, an integer and $p_{1}-p_{2}$ $= \pm 4$ (cf. Lemma 3). To be more precise, in this case, the fundamental unit u of $\boldsymbol{Q}(\sqrt{m})$ is $u=\left(p_{1}+2+\sqrt{m}\right) / 2$, where we assumed that $p_{1}<p_{2}{ }^{4}$) By the Dirichlet formula, we have

$$
h(m)=\frac{\sqrt{m}}{2 \log u} L\left(1, \chi_{k}\right) .
$$

Assume that $m \geqq e^{16}$. By Theorem 2 of [4], we have

$$
L\left(1, \chi_{k}\right)>(0.655) m^{-1 / 16} / 16
$$

with one possible exception of $m .{ }^{5}$)
It is clear that $u<2 \sqrt{m}$. Then we have

$$
\begin{aligned}
h(m) & =\frac{\sqrt{m}}{2 \log u} L\left(1, \chi_{k}\right)>\frac{\sqrt{m}}{2 \log 2 \sqrt{m}} \frac{1}{16}(0.655) m^{-1 / 16} \\
& =\frac{1}{16}(0.655) \frac{m^{7 / 16}}{\log 4 m} .
\end{aligned}
$$

Since $f(x)=\left(x^{7 / 16} / \log 4 x\right)$ is increasing on $\left[e^{16}, \infty\right)$, we have

$$
\begin{aligned}
h(m) & >\frac{1}{16}(0.655) \frac{\left(e^{16}\right)^{7 / 16}}{\log 4 e^{16}}=\frac{1}{16}(0.655) \frac{e^{7}}{\log 4+16}>\frac{1}{16}(0.655) \frac{e^{7}}{20} \\
& =2.244 \cdots>2,
\end{aligned}
$$

which completes the proof of Proposition (A).
4) The verification of $u u^{\prime}=1$ by using $p_{2}-p_{1}=4$ is amusing.
5) Put $k=m$ and $\varepsilon=1 / 16$ in Theorem 2 of [4].

References

[1] H. Heilbronn and E. H. Linfoot: On the imaginary quadratic corpora of classnumber one. Quart. J. Math., V. 5, pp. 293-301 (1934).
[2] H. K. Kim, M.-G. Leu and T. Ono: On two conjectures on real quadratic fields. Proc. Japan Acad., 63A, 222-224 (1987).
[3] H. M. Stark: A complete determination of the complex quadratic fields of classnumber one. Michigan Math. J., 14, 1-27 (1967).
[4] T. Tatuzawa: On a theorem of Siegel. Japan. J. Math., 21, 163-178 (1951).
[5] H. Yokoi: Class-number one problem for certain kind of real quadratic fields. Proc. International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields, June 24-28, 1986, Katata, Japan, pp. 125-137.

