No. 8] Proc. Japan Acad., 63, Ser. A (1987) 323

91. On a Conjecture of Ono on Real Quadratic Fields

By Ming-Guang LEU
Department of Mathematics, The Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1987)

Let k be a quadratic field. We shall denote by 4,, M,, k, and %, the
discriminant, the Minkowski constant, the class number and the Kronecker
character, respectively. Consider the following set

S.={p, rational prime ; p<M,, %.(p)=—1}.
It is easy to see that the ideal class group H, of k is generated by the clas-
ses of prime ideals p, p|p, p e S;. In particular, we have

(1) Sk=¢ _-—_—A/‘ hlc=1'
If & is imaginary, it is easy to prove the stronger relation :
(2) Si=¢ & =1

However, if k is real, (2) is not always true; e.g. h,=1 but S,={2} for
E=Q(6). In view of the celebrated conjecture of Gauss on the class
number of real quadratic fields, it is interesting to determine all k’s such
that S,=¢. Recently Prof. Ono conjectured that these must be exactly
the following 11 fields k=Q(+v/'m) with m=2, 3, 5, 13, 21, 29, 53, 77, 173, 293
and 437.

In this paper, we shall prove the following:

Theorem. There are at most 12 real quadratic fields k such that S,

? In the sequel, m will denote a square-free natural number =5 and

h(m) the class number %, with k=Q(vm).? We remind the reader that
M,=+/4,/2 and that

ﬂ) if p=+2, pyd,,
L=, "
dPI=N Cpyat-oe it p—2, 244,
0 if | 4.

Since %,(2)=0 for m=2, 3 (mod 4) and X,(2)=1 for m=1 (mod 8), S, con-
tains 2, i.e. S,#¢. So from now on we can assume that m=5 (mod 8).
Under this assumption, we shall try to determine %k for which S,=¢.

The theorem obviously follows from the following two Propositions
(A), (B).

Proposition (A). There exists at most one m=e'* with S,=4¢.

Proposition (B). If S,=¢ and m<e", then m=2,3,5,13,21,29, 53,77,
173, 293, 437.

1) The relation (2) is independent of deep results such as [1], [3].
2) Clearly, Sy=¢ for m=2 or 3.
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The proof of Proposition (B) is obtained by the table 1 of [2] and the
following table.

Table (m=p1ps, p1, P2: prime)

50621 1703021 b 7209221 b

95477 2030621 b 7338677 11
145157 1 2099597 11
194477 13 2205221
216221 5 2461757
239117 7 2499557
250997 17 2172221

m 7o m 7o m 7o
21 — 416021 5 3186221 5
K — 549077 7 3493157 19
437 — 680621 b 4003997 7
2021 5 741317 11 4347221 5
4757 7 783221 b 4862021 b
6557 11 826277 7 5022077 7
11021 5 938957 17 b517797 13
16637 11 1185917 29 6456677 17
27221 5 1640957 17 7080917 7
b
7

9126437 > ¢

Ou =3 3 O

In the column 7, of the table, the smallest odd prime
r0< M}, such that yx(ro) #—1is given.

The proof of Proposition (A) follows from the following three lemmas
together with Tatuzawa’s lower bound for L@, X;) ([4]).

Lemma 1. If S,=¢, then either m=p or m=pp,, where p, p,, D, are
primes.

Proof. Suppose m=pp.p;- - +D,, n==3, where p, is prime for i=1, 2,
.-+, n. Without loss of generality, let p,=min {p,, 0s, - - -, »,}. Then we have
P DP:0s- - - D, /4 which implies that p,<M,. Since X,(p,)=0, so p, € S; and
we have S;+#¢, Q.E.D.

Lemma 2. If m=a*4b* with positive integers a, b, and S,=¢, then
m=q*+4 where q is prime or 1.9

Proof. For m=>5, since M, <2, we have S;=¢ and ¢=1. Assume that
m>5.

Case 1. If b=1, then a is even and m>a’=4(a/2)’. Since 1<a/2
<Vm/2=M, and a/2 is odd as m=5 (mod 8), there exists a prime »< M,
such that |a/2. This implies that 2,(r)=(m/r)=(4,/r)=1, i.e. r € S,.

Case 2. If b+#1, we may assume that o is even and b is odd. Then,
we have a/2<M,.

(I) If a/2+#2°, $=0, then there exists a prime » such that r|a/2,
which implies, as above, that r € S;.

(I1) If a/2+#2°, $=0, then we consider two cases separately. (a) If

8) Lemma 2 can be applied to the case m=p because p=1 (mod 4).
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b is not a prime number, then there exists a prime » such that b=rt, t=3.
We have »r<M,, which implies again that » ¢ S,. (b) If b=¢q is prime, then

_ {22+q2
2)*+q*, with s>1.
Since m=5 (mod 8), we must have m=2"4¢, Q.E.D.

Lemma 3. If m=pp, and S,=¢, then p,—p,=+4 and p,=3 (mod 4),
1=1, 2.

Proof. If p,=1 (mod4) for i=1, 2, then m=p,p,=a’+b?, where a and
b are both positive integers. By Lemma 2, we have m=4+4¢?, where q is
prime. By Theorem 1 of [5], m is prime. This contradicts our assumption
on m. Now, without loss of generality, we may assume that y,>p,. Sup-
pose that p,—p,>4. We divide our argument into two cases.

Case 1. p,=8n+3, p,=8(n+8)+7, where n>0 and s=1 are integers.
Then we have

m=p,p,=(Bn+3)B(n+8)+17)
=(8n+3)(B8n+3+8s+4)=(8n+3)*+4(8n+3)(2s+1).

Since m/4>(8n+3)(2s+1), we have S;+#¢, because for the smallest prime
factor r of either (82+43) or (2s+1), we have r<M, and X.(r)=1.

Case 2. p,=8n+7, p,=8(n+s)+3, where n=>0 and s=2 are integers.
By a similar argument as in Case 1, we have S, ¢, Q.E.D.

Proof of Proposition (A). For the case where m=p is prime, by
Lemma 2, by (1) and by Theorem 1 of [2], there exists at most one m=e'
with S,=¢. A similar argument as in Theorem 1 of [2] works for m=p,p,,
where p, and p, are primes of the form 4n4-3, =0, an integer and p,—
=44 (cf. Lemma 3). To be more precise, in this case, the fundamental
unit u of Q(vm) is u=(p,+2++/m)/2, where we assumed that p,<p,.? By
the Dirichlet formula, we have

vm
2logu
Assume that m=e¢e'®. By Theorem 2 of [4], we have
L1, 2%)>(0.655)ym="'%/16

with one possible exception of m.»

It is clear that #<2+/m. Then we have

h(m)= o=~ L(1, X).

Jm vm 1 _
h(m) 21og L(l k)>—2—16§2\/— 16 (0.655)m 1118
1 me
=-——(0.655)———
16 ( ) log 4m
Since f(x)= (x”“‘/log 4x) is increasing on [, ), We have
(616)7/16 67

h(m)> (0 655) lo g4e“* 16 (0 655)m
=2.244- - >2,
which completes the proof of Proposition (A).

4) The verification of uu’=1 by using ps—pi1=4 is amusing.
5) Put k=m and ¢=1/16 in Theorem 2 of [4].

(0 655) — 20
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