91. On a Conjecture of Ono on Real Quadratic Fields

By Ming-Guang LEU

Department of Mathematics, The Johns Hopkins University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1987)

Let k be a quadratic field. We shall denote by Δ_k , M_k , h_k and χ_k , the discriminant, the Minkowski constant, the class number and the Kronecker character, respectively. Consider the following set

 $S_k = \{p, \text{ rational prime }; p \leq M_k, \chi_k(p) \neq -1\}.$

It is easy to see that the ideal class group H_k of k is generated by the classes of prime ideals $\mathfrak{p}, \mathfrak{p} | p, p \in S_k$. In particular, we have

$$(1) S_k = \phi \implies h_k = 1.$$

If k is *imaginary*, it is easy to prove the stronger relation :

 $(2) S_k = \phi \iff h_k = 1.^{1}$

However, if k is real, (2) is not always true; e.g. $h_k=1$ but $S_k=\{2\}$ for $k=Q(\sqrt{6})$. In view of the celebrated conjecture of Gauss on the class number of real quadratic fields, it is interesting to determine all k's such that $S_k=\phi$. Recently Prof. Ono conjectured that these must be exactly the following 11 fields $k=Q(\sqrt{m})$ with m=2, 3, 5, 13, 21, 29, 53, 77, 173, 293 and 437.

In this paper, we shall prove the following:

Theorem. There are at most 12 real quadratic fields k such that $S_k = \phi$.

In the sequel, *m* will denote a square-free natural number ≥ 5 and h(m) the class number h_k with $k = Q(\sqrt{m})^{(2)}$. We remind the reader that $M_k = \sqrt{A_k}/2$ and that

$$\chi_k(p) = egin{cases} \left(\left(rac{\mathcal{\Delta}_k}{p}
ight) & ext{if } p
eq 2, \ p
eq \mathcal{\Delta}_k, \ (-1)^{(\mathcal{A}_k^2 - 1)/8} & ext{if } p = 2, \ 2
eq \mathcal{\Delta}_k, \ 0 & ext{if } p \mid \mathcal{\Delta}_k. \end{cases}$$

Since $\chi_k(2) \equiv 0$ for $m \equiv 2, 3 \pmod{4}$ and $\chi_k(2) \equiv 1$ for $m \equiv 1 \pmod{8}$, S_k contains 2, i.e. $S_k \neq \phi$. So from now on we can assume that $m \equiv 5 \pmod{8}$. Under this assumption, we shall try to determine k for which $S_k \equiv \phi$.

The theorem obviously follows from the following two Propositions (A), (B).

Proposition (A). There exists at most one $m \ge e^{i\theta}$ with $S_k = \phi$.

Proposition (B). If $S_k = \phi$ and $m < e^{16}$, then m = 2, 3, 5, 13, 21, 29, 53, 77, 173, 293, 437.

¹⁾ The relation (2) is independent of deep results such as [1], [3].

²⁾ Clearly, $S_k = \phi$ for m = 2 or 3.

The proof of Proposition (B) is obtained by the table 1 of [2] and the following table.

m	r_0	m	r_0	m	r_0
21		416021	5	3186221	5
77		549077	7	3493157	19
437		680621	5	4003997	7
2021	5	741317	11	4347221	5
4757	7	783221	5	4862021	5
6557	11	826277	7	5022077	7
11021	5	938957	17	5517797	13
16637	11	1185917	29	6456677	17
27221	5	1640957	17	7080917	7
50621	5	1703021	5	7209221	5
95477	7	2030621	5	7338677	11
145157	11	2099597	11	$9126437 > e^{16}$	
194477	13	2205221	5		
216221	5	2461757	7		
239117	7	2499557	7		
250997	17	2772221	5		
	1	11	1	11	

Table $(m=p_1p_2, p_1, p_2: prime)$

In the column r_0 of the table, the smallest odd prime $r_0 \leq M_k$ such that $\chi_k(r_0) \neq -1$ is given.

The proof of Proposition (A) follows from the following three lemmas together with Tatuzawa's lower bound for $L(1, \chi_k)$ ([4]).

Lemma 1. If $S_k = \phi$, then either m = p or $m = p_1 p_2$, where p, p_1 , p_2 are primes.

Proof. Suppose $m = p_1 p_2 p_3 \cdots p_n$, $n \ge 3$, where p_i is prime for $i=1, 2, \ldots, n$. Without loss of generality, let $p_1 = \min \{p_1, p_2, \ldots, p_n\}$. Then we have $p_1^2 < p_1 p_2 p_3 \cdots p_n/4$ which implies that $p_1 \le M_k$. Since $\chi_k(p_1) = 0$, so $p_1 \in S_k$ and we have $S_k \ne \phi$, Q.E.D.

Lemma 2. If $m=a^2+b^2$ with positive integers a, b, and $S_k=\phi$, then $m=q^2+4$ where q is prime or 1.³

Proof. For m=5, since $M_k < 2$, we have $S_k = \phi$ and q=1. Assume that m > 5.

Case 1. If b=1, then a is even and $m > a^2 = 4(a/2)^2$. Since $1 < a/2 < \sqrt{m}/2 = M_k$ and a/2 is odd as $m \equiv 5 \pmod{8}$, there exists a prime $r \leq M_k$ such that $r \mid a/2$. This implies that $\chi_k(r) = (m/r) = (d_k/r) = 1$, i.e. $r \in S_k$.

Case 2. If $b \neq 1$, we may assume that a is even and b is odd. Then, we have $a/2 < M_k$.

(I) If $a/2 \neq 2^s$, $s \ge 0$, then there exists a prime r such that r|a/2, which implies, as above, that $r \in S_k$.

(II) If $a/2 \neq 2^s$, $s \ge 0$, then we consider two cases separately. (a) If

³⁾ Lemma 2 can be applied to the case m=p because $p\equiv 1 \pmod{4}$.

b is not a prime number, then there exists a prime r such that b=rt, $t\geq 3$. We have $r < M_k$, which implies again that $r \in S_k$. (b) If b=q is prime, then

$$m = \begin{cases} 2^2 + q^2 \\ (2^s)^2 + q^2, & \text{with} \\ s > 1. \end{cases}$$

Since $m \equiv 5 \pmod{8}$, we must have $m = 2^2 + q^2$, Q.E.D.

Lemma 3. If $m = p_1 p_2$ and $S_k = \phi$, then $p_1 - p_2 = \pm 4$ and $p_i \equiv 3 \pmod{4}$, i=1, 2.

Proof. If $p_i \equiv 1 \pmod{4}$ for i=1, 2, then $m=p_1p_2=a^2+b^2$, where a and b are both positive integers. By Lemma 2, we have $m=4+q^2$, where q is prime. By Theorem 1 of [5], m is prime. This contradicts our assumption on m. Now, without loss of generality, we may assume that $p_2 > p_1$. Suppose that $p_2 - p_1 > 4$. We divide our argument into two cases.

Case 1. $p_1=8n+3$, $p_2=8(n+s)+7$, where $n\geq 0$ and $s\geq 1$ are integers. Then we have

 $m = p_1 p_2 = (8n+3)(8(n+s)+7)$

 $=(8n+3)(8n+3+8s+4)=(8n+3)^2+4(8n+3)(2s+1).$

Since m/4 > (8n+3)(2s+1), we have $S_k \neq \phi$, because for the smallest prime factor r of either (8n+3) or (2s+1), we have $r \leq M_k$ and $\chi_k(r) = 1$.

Case 2. $p_1=8n+7$, $p_2=8(n+s)+3$, where $n \ge 0$ and $s \ge 2$ are integers. By a similar argument as in Case 1, we have $S_k \ne \phi$, Q.E.D.

Proof of Proposition (A). For the case where m = p is prime, by Lemma 2, by (1) and by Theorem 1 of [2], there exists at most one $m \ge e^{16}$ with $S_k = \phi$. A similar argument as in Theorem 1 of [2] works for $m = p_1 p_2$, where p_1 and p_2 are primes of the form 4n+3, $n\ge 0$, an integer and p_1-p_2 $= \pm 4$ (cf. Lemma 3). To be more precise, in this case, the fundamental unit u of $Q(\sqrt{m})$ is $u = (p_1 + 2 + \sqrt{m})/2$, where we assumed that $p_1 < p_2$.⁴⁾ By the Dirichlet formula, we have

$$h(m) = \frac{\sqrt{m}}{2\log u} L(1, \chi_k).$$

Assume that $m \ge e^{16}$. By Theorem 2 of [4], we have $L(1, \chi_k) > (0.655)m^{-1/16}/16$

with one possible exception of $m.^{5}$

It is clear that $u < 2\sqrt{m}$. Then we have

$$h(m) = \frac{\sqrt{m}}{2\log u} L(1, \chi_{k}) > \frac{\sqrt{m}}{2\log 2\sqrt{m}} \frac{1}{16} (0.655) m^{-1/16}$$
$$= \frac{1}{16} (0.655) \frac{m^{7/16}}{\log 4m}.$$

Since $f(x) = (x^{7/16}/\log 4x)$ is increasing on $[e^{16}, \infty)$, we have

$$h(m) > \frac{1}{16} (0.655) \frac{(e^{16})^{7/16}}{\log 4e^{16}} = \frac{1}{16} (0.655) \frac{e^7}{\log 4 + 16} > \frac{1}{16} (0.655) \frac{e^7}{20}$$

= 2.244...>2,

which completes the proof of Proposition (A).

4) The verification of uu'=1 by using $p_2-p_1=4$ is amusing.

5) Put k=m and $\epsilon=1/16$ in Theorem 2 of [4].

No. 8]

References

- H. Heilbronn and E. H. Linfoot: On the imaginary quadratic corpora of classnumber one. Quart. J. Math., V. 5, pp. 293-301 (1934).
- [2] H. K. Kim, M.-G. Leu and T. Ono: On two conjectures on real quadratic fields. Proc. Japan Acad., 63A, 222-224 (1987).
- [3] H. M. Stark: A complete determination of the complex quadratic fields of classnumber one. Michigan Math. J., 14, 1-27 (1967).
- [4] T. Tatuzawa: On a theorem of Siegel. Japan. J. Math., 21, 163-178 (1951).
- [5] H. Yokoi: Class-number one problem for certain kind of real quadratic fields. Proc. International Conference on Class Numbers and Fundamental Units of Algebraic Number Fields, June 24-28, 1986, Katata, Japan, pp. 125-137.