113. On a Certain Distribution on GL(n) and Explicit Formulas

By Hiroyuki Yoshida
Department of Mathematics, Kyoto University
(Communicated by Kunihiko Kodaira, m. J. A., Dec. 14, 1987)

1. A. Weil [3] constructed a universal distribution Δ on the Weil group. The values of Δ at various test functions give the contributions from the zeros of L-functions which appear in the explicit formulas. In this note, we shall construct a universal distribution Δ_{n} on $G L(n)$ and prove the explicit formula for automorphic L-functions using Δ_{n} when $n=2$. For $n>2$, to derive such a result, we must assume certain property of characters of infinite dimensional representations of $G L(n)$ over a local field. This property, formulated as Conjecture, seems to lie slightly beyond our present knowledge of harmonic analysis. The distributions Δ_{n} have striking formal resemblance to Weil's one. Furthermore they are related to each other so that Δ_{m} is the "direct image" of Δ_{n} for $m>n$. This is a pleasant fact since we think that a discovery of new functorial properties related to zeros of zeta functions would be crucial for the proof of the Riemann hypothesis.
2. Let k be a global field of characteristic p. We shall chiefly be concerned with the number field case. For $p>1$, modifications are suggested when necessary. Let $G=G L(n)$ considered as an algebraic group defined over k and let G_{A} denote the adelization of G. Let T denote the maximal split torus consisting of all diagonal matrices in G. Let $\pi=\otimes \pi_{v}$ be a cuspidal automorphic representation of G_{A} and $L(s, \pi)=\prod_{v} L\left(s, \pi_{v}\right)$ be the L-function attached to π. Then $L(s, \pi)$ is an entire function which satisfies the functional equation
(1)

$$
L(s, \pi)=\varepsilon(s, \pi) L(1-s, \tilde{\pi})
$$

For $F \in C_{c}^{\infty}\left(\boldsymbol{R}_{+}^{\times}\right)$and $s \in C$, set

$$
\begin{equation*}
\Phi(s)=\int_{R_{+}^{\times}} F(x) x^{1 / 2-s} d^{\times} x . \tag{2}
\end{equation*}
$$

(If $p>1$, set $\Phi(s)=\sum_{n \in Z} F\left(q^{n}\right) q^{n(1 / 2-s)} \log q$, where q is the number of elements of the constant field of k.) Then Φ is an entire function of s. It satisfies $\Phi(\sigma+i t)=O\left(|t|^{-N}\right),|t| \rightarrow \infty$ for any N uniformly for any fixed vertical strip $A \leq \sigma \leq B$ if $p=0$. Without losing substantial generality, we assume that π is unitary. Let $A>1 / 2, T^{\prime}>T$ and R be the rectangle whose vertexes are $1 / 2 \pm A+i T, 1 / 2 \pm A+i T^{\prime}$. Let C denote the contour ∂R taken in positive direction. As usual, we consider the integral

$$
\begin{equation*}
I\left(T, T^{\prime}\right)=\frac{1}{2 \pi i} \int_{C} \Phi(s) d \log L(s, \pi) \tag{3}
\end{equation*}
$$

assuming that no zeros of $L(s, \pi)$ lie on C. It is easy to check the existence of

$$
I:=\lim _{T \rightarrow-\infty, T^{\prime} \rightarrow+\infty} I\left(T, T^{\prime}\right)
$$

(a weak version of the Riemann-von Mangoldt formula, $N(T)=O(T \log T)$ in usual notation, suffices). By [1], Remark 5.4, $L(s, \pi)$ does not vanish outside of the vertical strip $0<\sigma<1$. Set

$$
\begin{equation*}
S(\pi, F)=\sum_{\rho} n(\rho, \pi) \Phi(\rho), \tag{4}
\end{equation*}
$$

where ρ extends over all zeros of $L(s, \pi)$ with the multiplicity $n(\rho, \pi)$. (If $p>1$, we count zeros modulo $i P$, where $P=2 \pi / \log q$.) By the residue calculus, we get $I=S(\pi, F)$. As $\varepsilon(s, \pi)=$ constant $\times\left(\left|f(\pi) \| d_{k}\right|^{n}\right)^{s}$, using the functional equation, we obtain

$$
\begin{equation*}
S(\pi, F)=J-F(1) \log \left(\left|f(\pi) \| d_{k}\right|^{n}\right), \tag{5}
\end{equation*}
$$

where

$$
\begin{array}{r}
J=\frac{1}{2 \pi i}\{
\end{array} \begin{aligned}
\infty & -\infty \\
-\infty & 1 / 2+A+i t) d \log L(1 / 2+A+i t, \pi) \\
& -\Phi(1 / 2-A+i t) d \log L(1 / 2+A-i t, \tilde{\pi})\}
\end{aligned}
$$

and $|f(\pi)|$ (resp. $\left.\left|d_{k}\right|\right)$ denotes the idele norm of the conductor of π (resp. the differential idele of k). Take A sufficiently large. As

$$
\log L(s, \pi)=\sum_{v} \log L\left(s, \pi_{v}\right)
$$

when the Euler product is absolutely convergent, we see easily that J can be divided into local contributions.

$$
\begin{aligned}
& J=\sum_{v} J_{v} \\
& J_{v}=\frac{1}{2 \pi i}\left\{\int_{-\infty}^{\infty} \Phi(1 / 2+A+i t) d \log L\left(1 / 2+A+i t, \pi_{v}\right)\right. \\
&\left.-\Phi(1 / 2-A+i t) d \log L\left(1 / 2+A-i t, \tilde{\pi}_{v}\right)\right\}
\end{aligned}
$$

(If $p>1$, the integrals for J and J_{v} should be taken from a to $a+P$ for some $a \in R$).
3. We are going to express J_{v} using the characters of π_{v}. Let Δ_{v} be the absolute value of the discriminant function of G_{v}. We have $\Delta_{v}(g)=$ $\left|\prod_{i<j}\left(\lambda_{i}-\lambda_{j}\right)^{2}\right|_{v} /|\operatorname{det} g|_{v}^{n-1}$, where $\lambda_{i}(1 \leq i \leq n)$ are eigenvalues of $g \in G_{v}$. Let $\chi_{\pi_{v}}$ denote the character of π_{v} and we set $\tilde{\chi}_{\pi_{v}}=\chi_{\pi_{v}} \times \Delta_{v}^{1 / 2}$. Hereafter until 5, we shall assume $n=2$. First let v be non-archimedean. Let \mathcal{O}_{v} denote the maximal compact subring of k_{v}, q_{v} the module of k_{v} and we normalize the multiplicative Haar measure $d^{\times} \lambda$ on k_{v}^{\times}so that $\operatorname{vol}\left(\mathcal{O}_{v}^{\times}\right)=\log q_{v}$. For a continuous function f on k_{v}^{\times}, we set

$$
P F_{0} \int_{k_{v}^{\times}} \frac{f(\lambda)}{|\lambda-1|_{v}} d^{\times} \lambda=\int_{O_{v}^{\times}} \frac{f(\lambda)-f(1)}{|\lambda-1|_{v}} d^{\times} \lambda+\int_{k_{v}^{\times}-\Theta_{v}^{\times}} \frac{f(\lambda)}{|\lambda-1|_{v}} d^{\times} \lambda,
$$

whenever the integrals are meaningful. We have

$$
\begin{align*}
J_{v}- & F(1) \log \left(\left|f\left(\pi_{v}\right)\right|_{v}\right) \tag{6}\\
& =-P F_{0} \int_{v_{v}^{\times}} F\left(|\lambda|_{v}\right) \tilde{\chi}_{\pi_{v}}\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right) \frac{|\lambda|_{v}^{1 / 2}}{|\lambda-1|_{v}} d \times \lambda .
\end{align*}
$$

We note that $\tilde{\chi}_{\pi_{v}}$ can be considered as a continuous function on T_{v}.

Now let v be an archimedean place. Define functions on R_{+}^{\times}by

$$
f_{0}(x)=\inf \left(x^{1 / 2}, x^{-1 / 2}\right), \quad f_{1}=f_{0}^{-1}-f_{0}
$$

If φ is a function on $\boldsymbol{R}_{+}^{\times}$such that $\varphi-c f_{1}^{-1}$ is integrable on $\boldsymbol{R}_{+}^{\times}$, we set

$$
P F_{0} \int_{R_{+}^{\times}} \varphi(x) d^{\times} x=\lim _{t \rightarrow+\infty}\left\{\int_{R_{+}^{\times}}\left(1-f_{0}^{2 t}(x)\right) \varphi(x) d^{\times} x-2 c \log t\right\}+2 c \log 2 \pi .
$$

Let $k_{v}^{0}=\left\{x \in k_{v}^{\times} \|\left. x\right|_{v}=1\right\}$. For a function f on k_{v}^{\times}, define the function φ on $\boldsymbol{R}_{+}^{\times}$by

$$
\varphi(x)=\int_{k_{v}^{0}} f(y z) d z \quad \text { with }|y|_{v}=x
$$

and set

$$
P F_{0} \int_{k_{0}^{\times}} f(\lambda) d^{\times} \lambda=P F_{0} \int_{R_{\downarrow}^{\times}} \varphi(x) d^{\times} x,
$$

whenever the right hand side is meaningful (cf. [3], § 3 and §14). Then we have

$$
J_{v}=-P F_{0} \int_{k_{v}^{\times}} F\left(|\lambda|_{v}\right) \tilde{\chi}_{\pi_{v}}\left(\begin{array}{ll}
\lambda & 0 \tag{7}\\
0 & 1
\end{array}\right) \frac{|\lambda|_{v}^{1 / 2}}{|\lambda-1|_{v}} d^{\times} \lambda,
$$

where $\tilde{\chi}_{\pi_{v}}$ is considered as a continuous function on T_{v}.
4. For every place v of k, define a distribution D_{v} on G_{v} by

$$
D_{v}(f)=-P F_{0} \int_{k_{v}^{\times}} f\left(\left(\begin{array}{ll}
\lambda & 0 \\
0 & 1
\end{array}\right)\right) \frac{|\lambda|_{v}^{1 / 2}}{|\lambda-1|_{v}} d^{\times} \lambda .
$$

Let δ_{1} be the Dirac distribution on G_{4} supported on 1 . We define a distribution Δ on G_{A} by

$$
\Delta=-\log \left|d_{k}\right| \delta_{1}-\sum_{v} D_{v}
$$

where v extends over all places of k. The function $g_{v} \rightarrow(1 / 2) \tilde{\chi}_{\pi_{v}}\left(g_{v}\right)$ is a continuous function on T_{v}. If $g \in G_{A}$, its value is 1 or 0 except for finitely many v. Hence we may set

$$
\tilde{\chi}_{\pi}(g)=\prod_{v} \frac{1}{2} \tilde{\chi}_{\pi_{v}}\left(g_{v}\right), \quad g \in T_{A}
$$

and we may consider the pairing with Δ, since Δ is supported on T_{A}. By (4), (5), (6), (7), we can state the final result as follows.

Theorem. $\quad S(\pi, F)=\Delta\left(2 F(|\operatorname{det} g|) \tilde{\chi}_{\pi}(g)\right)$.
Remark. Our distribution Δ lacks the term which corresponds to D in Weil's formula. This is simply because we have only considered cuspidal automorphic forms. It would be interesting to construct the distribution which corresponds to D using the theory of Eisenstein series.
5. We shall describe the general situation for $G L(n), n>2$. Set $g_{\lambda}=$ $\operatorname{diag}[\lambda, 1, \cdots, 1] \in G_{v}$ for $\lambda \in k_{v}^{\times}$.

Conjecture. (1) Assume v is non-archimedean and π_{v} is generic. Then $\tilde{\chi}_{x_{v}}$ is continuous on T_{v} and $\tilde{\chi}_{\pi_{v}}(1)=n!$. Furthermore

$$
\begin{aligned}
& (n-1)!J_{v}=-\int_{k_{v}^{\times}-o_{v}^{x}}^{0} F\left(|\lambda|_{v}\right) \tilde{\chi}_{\pi_{v}}\left(g_{\lambda}\right) \frac{|\lambda|_{v}^{1 / 2}}{|\lambda-1|_{v}} d \times \lambda, \\
& (n-1)!\log \left(\left|f\left(\pi_{v}\right)\right|_{v}\right)=\int_{\rho_{v}^{x}}\left(\tilde{\chi}_{\pi_{v}}\left(g_{\lambda}\right)-n!\right) \frac{1}{|\lambda-1|_{v}} d^{\times} \lambda .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& (n-1)!\left[J_{v}-F(1) \log \left(\left|f\left(\pi_{v}\right)\right|_{v}\right)\right] \\
& \quad=-P F_{0} \int_{k_{v}^{\times}} F\left(|\lambda|_{v}\right) \tilde{\chi}_{\pi_{v}}\left(g_{\lambda}\right) \frac{\mid \lambda \lambda_{v}^{1 / 2}}{|\lambda-1|_{v}} d \times \lambda .
\end{aligned}
$$

(2) If v is archimedean and π_{v} is generic, we have

$$
(n-1)!J_{v}=-P F_{0} \int_{k_{0}^{x}} F\left(|\lambda|_{v}\right) \tilde{\chi}_{\pi_{v}}\left(g_{\lambda}\right) \frac{|\lambda|_{v}^{1 / 2}}{|\lambda-1|_{v}} d^{\times} \lambda .
$$

Admitting this conjecture, we can express $S(\pi, F)$ as follows. For every place v of k, define a distribution D_{v} on G_{v} by

$$
D_{v}(f)=-P F_{0} \int_{k_{v}^{\times}} f\left(g_{\lambda}\right) \frac{|\lambda|_{v}^{1 / 2}}{|\lambda-1|_{v}} d^{\times} \lambda .
$$

Let δ_{1} be the Dirac distribution on G_{A} supported on 1. Set

$$
\Delta_{n}=-\log \left|d_{k}\right| \delta_{1}-\sum_{v} D_{v},
$$

which is a distribution on G_{A}. Put

$$
\tilde{\chi}_{\pi}(g)=\prod_{v} \frac{1}{n!} \tilde{\chi}_{\pi_{v}}\left(g_{v}\right),
$$

which is meaningful at least for $g \in T_{A}$. Then we have

$$
S(\pi, F)=\Delta_{n}\left(n F(|\operatorname{det} g|) \tilde{\chi}_{\pi}(g)\right) .
$$

We note that Δ_{n} has a good functorial property. For $m>n$, let $\iota^{m, n}$ denote the standard injection of $G L(n)_{A}$ into $G L(m)_{A}$ given by

$$
g \longrightarrow\left(\begin{array}{ll}
g & 0 \\
0 & 1
\end{array}\right)
$$

Then we have $\iota_{*}^{m, n} \Delta_{n}=\Delta_{m}$, where $\iota_{*}^{m, n} \Delta_{n}$ denotes the direct image of Δ_{n} under $\iota^{m, n}$.

References

[1] H. Jacquet and J. A. Shalika: On Euler products and the classification of automorphic representations. I. Amer. J. Math., 103, 499-558 (1981).
[2] C. J. Moreno: Explicit formulas in the theory of automorphic forms. Springer Lecture Notes, 626, 73-216 (1976).
[3] A. Weil: Sur les formules explicites de la théorie des nombres. Izv. Math. Nauk, 36, 3-18 (1972) $=$ [1972] in OEuvres (see also [1952b] in OEuvres).

