111. A Calculus of the Tensor Product of Two Holonomic Systems with Support on Non-singular Plane Curves

By Shinichi Tajima
Faculty of General Education, Niigata University
(Communicated by Kôsaku Yosida, M. J. A., Dec. 14, 1987)

The aim of this paper is to calculate (in the framework of \mathscr{D}_{x}-Modules) the tensor product of two holonomic systems supported on non-singular plane curves.
§O. Notation. Let X be a domain in C^{2} containing the origin $P=(0,0)$. Let \mathcal{O}_{X} be the sheaf of germs of holomorphic functions and \mathscr{D}_{X} the sheaf on X of rings of linear partial differential operators of finite order with holomorphic coefficients. Let F be an analytic plane curve (on X) passing through P with a defining equation $f=0$. Let us denote by $\mathscr{I}_{[F]}^{1}\left(\mathcal{O}_{X}\right)$ the sheaf of algebraic local cohomology with supports in F :

$$
\mathcal{S}_{[F]}^{1}\left(\mathcal{O}_{X}\right)=\underset{k}{\lim } \mathcal{E x t a}_{O_{X}}^{1}\left(\mathcal{O}_{X} /(f)^{k}, \mathcal{O}_{X}\right)=\mathcal{O}_{X}\left[f^{-1}\right] / \mathcal{O}_{X}
$$

Note that the module $\mathcal{I}_{[F]}^{1}\left(\mathcal{O}_{X}\right)$, which is endowed with a natural structure of left \mathscr{D}_{X}-Module, is a holonomic system.
\S 1. Statement of the results. Let F and G be plane curves meeting properly at a point P. We set:

$$
\begin{aligned}
\mathcal{L} & =\mathcal{H}_{\left[F_{]}\right.}^{1}\left(\mathcal{O}_{X}\right) \hat{\otimes} \mathscr{H}_{[G]}^{1}\left(\mathcal{O}_{X}\right) \\
& =\mathcal{D}_{X \times X} \otimes_{p_{1}^{-1} \mathscr{I}_{X} \otimes p_{2}^{-1} \mathscr{Q}_{X}}\left(p_{1}^{-1} \mathscr{G}_{[F]}^{1}\left(\mathcal{O}_{X}\right) \otimes p_{2}^{-1} \mathcal{H}_{[G]}^{1}\left(\mathcal{O}_{X}\right)\right),
\end{aligned}
$$

where p_{1} and p_{2} are the first and the second projections from $X \times X$ to X. The following quasi-isomorphism is a special case of a result of Kashiwara [2]:

$$
\mathcal{H}_{[F]}^{1}\left(\mathcal{O}_{X}\right) \stackrel{L}{\otimes}_{O_{X}} \mathcal{H}_{[G]}^{1}\left(\mathcal{O}_{X}\right)=\mathscr{D}_{X \rightarrow X \times X} \stackrel{L}{\otimes}_{\mathscr{Q}_{X \times X}} \mathcal{L} .
$$

we have the following
Theorem 1 (Intersection formula). Let F and G be non-singular plane curves (on X) intersecting properly at P. We assume $F \cap G=P$. Then we have the following isomorphisms of \mathscr{D}_{X}-Modules.
(1) $\mathscr{I o r}_{k}^{Q_{X \times X}}\left(\mathscr{D}_{X \rightarrow X \times X^{\prime}} \mathcal{L}\right)=0$ for $k \neq 0$,
(2) $\mathscr{G}_{[F]}^{1}\left(\mathcal{O}_{X}\right) \otimes_{O_{X}} \mathcal{H}_{[G]}^{1}\left(\mathcal{O}_{X}\right)=\mathscr{D}_{X \rightarrow X \times X} \otimes_{\mathscr{D}_{X \times X}} \mathcal{L}=\mathcal{H}_{[P]}^{2}\left(\mathcal{O}_{X}\right)$,
where $\mathcal{H}_{[P]}^{2}\left(\mathcal{O}_{X}\right)$ is the \mathscr{D}_{X}-Module of algebraic local cohomology with supports in P.

Remark 2. In the case where F and G being transversal the results above are well known (cf. Sato-Kawai-Kashiwara [3], Schapira [4]).

Example 3. Set $X=\left\{(x, y) \in C^{2}\right\}, X_{1}=\left\{\left(x_{1}, y_{1}\right) \in C^{2}\right\}$, and $X_{2}=\left\{\left(x_{2}, y_{2}\right)\right.$ $\left.\in C^{2}\right\} . \quad X_{1}$ and X_{2} are two copies of X. Put $F=\left\{\left(x_{1}, y_{1}\right) \mid y_{1}=0\right\}, G=\left\{\left(x_{2}, y_{2}\right) \mid\right.$ $\left.y_{2}-x_{2}^{2}=0\right\}$. We denote by $\delta\left(y_{1}\right)$ (resp. $\delta\left(y_{2}-x_{2}^{2}\right)$) the canonical generator of
$\mathscr{G}_{[F]}^{1}\left(\mathcal{O}_{X}\right)\left(\operatorname{resp} . \mathscr{H}_{[G]}^{1}\left(\mathcal{O}_{X}\right)\right)$. We set:

$$
m=l_{X \rightarrow x_{1} \times x_{2}} \otimes\left(\delta\left(y_{1}\right) \hat{\otimes} \delta\left(y_{2}-x_{2}^{2}\right)\right)
$$

where $l_{X \rightarrow x_{1} \times X_{2}}$ is a canonical section of $\mathscr{D}_{X \rightarrow X_{1} \times X_{2}}$ (cf. [3], [4]). We get:

$$
\mathscr{D}_{X} m=\mathscr{D}_{X \rightarrow X_{1} \times X_{2}} \otimes_{\mathscr{D}_{X_{1} \times X_{2}}}\left(\mathscr{G}_{[F]}^{1}\left(\mathcal{O}_{X_{1}}\right) \hat{\otimes} \mathcal{H}_{[G]}^{1}\left(\mathcal{O}_{X_{2}}\right)\right)
$$

and

$$
\mathscr{D}_{x} m=\mathscr{D}_{x} /\left(\mathscr{D}_{x} x^{2}+\mathscr{D}_{x}\left(x \frac{\partial}{\partial x}+2\right)+\mathscr{D}_{x} y\right) .
$$

Setting $u=-2 x m$, we have

$$
\mathscr{D}_{X} m=\mathscr{D}_{X} u=\mathscr{D}_{X} /\left(\mathscr{D}_{X} x+\mathscr{D}_{X} y\right)=\mathscr{H}_{[P]}^{2}\left(\mathcal{O}_{X}\right),
$$

where $P=(0,0)$.
Theorem 4 (Self intersection formula). Let F be a non-singular plane curve. We set:

$$
\mathscr{F}=\mathscr{D}_{X \times X} \otimes_{p_{1}^{-1} \mathscr{Q}_{X} \otimes p_{2}^{-1} \mathscr{D}_{X}}\left(p_{1}^{-1} \mathcal{G}_{[F]}^{1}\left(\mathcal{O}_{X}\right) \hat{\otimes} p_{2}^{-1} \mathcal{H}_{[F]}^{1}\left(\mathcal{O}_{X}\right)\right) .
$$

Then we have
(1) $\mathscr{T o r}_{k}^{9_{X \times x}}\left(\mathscr{D}_{X \rightarrow X \times X}, \mathscr{P}\right)=0 \quad k \neq 1$
(2) $\mathscr{I}_{1}^{פ_{1 \times x}}\left(\mathscr{D}_{X \rightarrow X \times X}, \mathscr{F}\right)=\mathscr{H}_{[F]}^{1}\left(\mathcal{O}_{X}\right)$.
§2. Sketch of the proofs. Set $X_{1}=\left\{\left(x_{1}, y_{1}\right) \in C^{2}\right\}, \quad X_{2}=\left\{\left(x_{2}, y_{2}\right) \in C^{2}\right\}$, and $X=\left\{(x, y) \in C^{2}\right\} \cong\left\{\left(x_{1}, y_{1}, x_{2}, y_{2}\right) \in X_{1} \times X_{2} \mid x_{1}=x_{2}, y_{1}=y_{2}\right\}$. Denoting the canonical section of $\mathscr{D}_{X \rightarrow X_{1} \times X_{2}}$ by $l_{X \rightarrow X_{1} \times X_{2}}$ we have:
(*)

$$
\left\{\begin{array}{l}
x l_{X \rightarrow x_{1} \times X_{2}}=l_{X \rightarrow x_{1} \times X_{2}} \otimes x_{1}=l_{X \rightarrow X_{1} \times x_{2}} \otimes x_{2} \\
\frac{\partial}{\partial x} l_{X \rightarrow X_{1} \times X_{2}}=l_{X \rightarrow X_{1} \times x_{2}} \otimes\left(\frac{\partial}{\partial x_{1}}+\frac{\partial}{\partial x_{2}}\right) \\
\text { etc. }
\end{array}\right.
$$

Set $\mathcal{L}=\mathcal{H}_{[F]}^{1}\left(\mathcal{O}_{X_{1}}\right) \hat{\otimes} \mathscr{H}_{[G]}^{1}\left(\mathcal{O}_{X_{2}}\right) . \quad$ Recall that $\mathscr{D}_{X \rightarrow X_{1} \times X_{2}} \stackrel{L}{\otimes} \mathcal{L}$ is quasi-isomorphic to the following complex:

By using the relations (*) we can calculate the \mathscr{D}_{x}-Module structure of the homology groups of the complex (**). This yields the results.

References

[1] M. Kashiwara: On the maximally overdetermined system of linear differential equations. I. Publ. RIMS, Kyoto Univ., 10, 563-579 (1975).
[2] -: On the holonomic systems of linear differential equations. II. Inventiones Math., 49, 121-135 (1978).
[3] M. Sato, T. Kawai, and M. Kashiwara: Microfunctions and pseudo-differential equations. Lecture Notes in Math., vol. 287, pp. 265-529 (1973).
[4] P. Schapira: Microdifferential Systems in the Complex Domain. Springer-Verlag (1985).

