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1. Introduction. V. Jones’ theory on index of IIl factors [5] is a
major break-through in recent development of the theory of operator
algebras. In the type II case, if index is finite, then a factor and its sub-
factor are known to possess many similar properties (AFD, Property T,
etc.). We would like to investigate a similar problem in the type III set-up.

Let l be a type III factor with a (type III) subfactor , and let E be
a conditional expectation from onto . The notion of index of E was
introduced by the second-named author, [6], based on Connes’ spatial
theory and Haagerup’s theory on operator valued weights, [4]. Throughout
the article we assume Index E c. To check how similar /and are,
we will compare the (smooth part of) flow of weights of /with that of. Our main theorem shows that each of the two flows is restricted by
the other via the Index E (o)-information. More precisely, there exists
a single flow (X, T), and each of the two flows of weights appears as a (at
most Index E to one) factor flow of (X, Tt).

In this announcement we will just sketch a proof of the main theorem.
Full details and further results will be published elsewhere.

2. Notations and the main theorem. Let E be a conditional expec-
tation from a actor /onto its subfactor . We assume that Index E
c and /and are o.f type III. (If one of and is of type III, then

the other is also of type III.) We will denote by (X, T) the flow o
weights of ([3]). The flow of weights can be computed from the as-
sociated crossed product l--i>R and the dual action (t} on
(See [3], [10] or details.) More precisely, the center Z() is isomorphic
to L(X, d/), and by restriction the dual action induces the ergodic auto-
morphism group on Z(/). Then, the non-singular ergodic flow
on X is related to t via

(t(f))(o)-- f(T_o) o e X:, t e R, f e Z(t)-L(X:, d/).
Theorem. There exists a flow (X, (Tt}eR) satisfying the following"
( ) X is isomorphic to X: (1, 2, .., m} (resp. X {1, 2, ., n}) as

a measure space for some positive integer m, mIndex E (resp. positive
integer n, n_<_Index E),

(ii) the projection map : (resp. ) from X onto X: (resp. X)
intertwines Tt and T (resp. Tt and T)"

T = T, T =oT, t e R.
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Let and 37 be of type III, III, 0,/1, respectively ([1]). In [7],
it was shown that log /log/ is rational (when Index E co). The above
theorem gives us a bound for this rational number.

Corollary. When Index E we have"
( ) =l if and only if z=l,
(ii) =0 if and only if =0,
(iii) when 0, 1, there exis two positive integers p, q such that

p, q Index E and =/.

Existence of the common finite extension of two flows of weights shows
that Tff is trivial flow if and only if so is T and that Tff is periodic if
and only if so is T. Hence we get (i) and (ii). Furthermore, (i) in the
previous theorem gives us a bound for the ratio between these two periods.
Hence we get (iii).

3. Sketch of a proof of the theorem. Representing on L(),
we construct the basic extension=(, e) and the conditional expecta-
tion E", (from E-).

Let be a fixed normal faithful state on . Setting =oE e
and Z= E e (l), we consider the inclusions

=zR=,R=R
of von Neumann algebras of type II acting on =L(R, L2()). Let Z(s),
s e R, be the unitary operator on defined by

((8))(t) e-’(t).
Then Ad Z(s) gives rise to the dual actions ff’,, and 0 on ,, and
respectively.

We construct two flows rom. By Takesaki’s criterion, [9],
there exists a conditional expectation " stisfying =, where

is the dual weight on . As in [4], we have oS=0o,seR. We
then make use o the Pimsner-Popa inequality [8]"

E(x)>(Index= E)-x x e+
Actually we get the complete positivity o xE(x)-(Index)-x, which
shows that the Pimsner-Popa inequality remains valid or E.

By restriction, gives rise to

" ’ Z() and " Z(’) >Z().
They still satisfy the Pimsner-Popa inequality and intertwine the dual
actions on the respective algebras. A measure theoretical argument (or
equivalently, the direct integral decomposition o Z(’)c’
(cZ()’) over Z()) shows that the spectrum o Z( ’) is o the orm
X=N {1, 2, .,n}, nIndex E. Here, dimension estimate obtained rom
the Pimsner-Popa inequality and ergodicity o the dual action on Z() are

crucial. The dual action on Z( ’)=L(X= {1, 2, ., n}) induces a non-
singular (not necessarily ergodic) transformation T on X=N (1, 2,..., n}.
Then T and T are intertwined by the projection map ==" X=N {1, 2, ..., n}
Z,

Repeating the same argument orx, we conclude that
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IZ(/ll_q,I’)--L(Xs (1,2, ..., m}), mIndex E=Index E, the flow

JT on X {1, 2, ..., m} determined by the dual action on Z(I f ’)
|and T on X are intertwined by the projection map :X
{1,2,...,m}-.X.
It is easy to see that is the basic extention of 5/, that is,

14=J’J=(, }
where is the projection coming from/ and ] is the modular conjugation
operator on J(. Therefore, J *J induces n anti-isomorphism between
1 2’ and q ’, and hence n isomorphism between Z(2 f 2’) and
Z(Af’). Since J commutes with p(s), this isomorphism actually inter-
twines the dual actions on the respective abelian algebras. Therefore, the
tWO flOWS (X==Xx {1, 2, ., }, Tt) and (X {1, 2, ., m}, T) can be
identified.
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