Proc. Japan Acad., 64, Ser. A (1988)

13. On Pathwise Projective Invariance of Brownian Motion. I^(),*)

By Shigeo TAKENAKA Department of Mathematics, Nagoya University (Communicated by Kôsaku Yosida, M. J. A., Feb. 12, 1988)

Introduction. Brownian motion with parameter in Riemannian space was introduced by P. Lévy [3]. He also considered white noise representation of Brownian motion in connection with geometric structure of its parameter space. In line with his idea we start with the simplest case of usual 1-parameter Brownian motion. The parameter space is considered the projective space P^1 rather than R^1 .

In part I, we study an invariance property of the path space. This property is a reflection of the projective structure of P^1 . We also see that this invariance characterizes the Brownian motion between 1-parameter self-similar Gaussian processes.

In part II, the type of the group action which describes the above invariance will be determined as a *discrete series representation of index* 2 in term of the theory of unitary representation.

In part III, we will consider a generalization of the partially invariance in § 3. Proposition 4 will be extended to multi-parameter case. The Möbius group will appear in the invariance property.

§1. Projective invariance. A Gaussian system $\{B(t; \omega); t \in R\}$ is called a Brownian motion if it satisfies

- $(\mathcal{B}1) \quad B(0) \equiv 0,$
- (B2) $B(t)-B(s) \stackrel{\mathcal{L}}{=} N(0, |t-s|)$, the Gaussian law of mean 0 and variance |t-s|.

To fix the idea, take a continuous version

(B3) $B(t; \omega)$ is continuous in t including $t = \infty$ for any ω , that is $\lim_{|t| \to \infty} \frac{1}{t} B(t) = 0.$

It is easy to show that the processes $B_{1,s}(t)$, $B_{2,u}(t)$ and $B_{3}(t)$ below are Brownian motions in the above sense;

- $(\mathcal{I}1) \quad B_{1,s}(t) \equiv B(t+s) B(s), s \in \mathbf{R},$
- $(\mathcal{T}2) \quad B_{2,u}(t) \equiv e^{-u/2}B(e^u t), \ u \in \mathbf{R},$
- $(\mathcal{T}3) \quad B_{\mathfrak{s}}(t) \equiv tB\left(\frac{-1}{t}\right).$

It is natural to ask what group is generated by the transforms $(\mathcal{T}1)$ - $(\mathcal{T}3)$ acting on $B(t; \omega)$.

^{†)} This research is supported in part by Grant-in-Aid for Scientific Research 62540149, 1987 from the Ministry of Education, Science, and Culture of Japan.

^{*)} Dedicated to Professor T. HIDA on his 60th birthday.

S. TAKENAKA

Theorem 1. (i) For any $g = \begin{pmatrix} a, b \\ c, d \end{pmatrix} \in SL(2, \mathbb{R})$, the process (1) $B^{g}(t; \omega) \equiv (ct+d)B\left(\frac{at+b}{ct+d}; \omega\right) - ctB\left(\frac{a}{c}; \omega\right) - dB\left(\frac{b}{d}; \omega\right)$

is a Brownian motion.

(ii) $(B^{g})^{h}(t; \omega) \equiv B^{gh}(t; \omega)$ holds for any $g, h \in SL(2, \mathbb{R})$ and almost all ω .

Proof. The group $SL(2; \mathbf{R})$ is locally isomorphic to the group generated by $(\mathcal{T}1)$ - $(\mathcal{T}3)$. The essential part of the proof is to check of the iteration law (ii). We can check it by direct calculations. For example,

let
$$g = \begin{pmatrix} a, b \\ c, d \end{pmatrix}$$
 and $J = \begin{pmatrix} 0, -1 \\ 1, 0 \end{pmatrix}$.
 $(B^{\sigma})^{J}(t) = t \left\{ \left(-\frac{c}{t} + d \right) B \left(\frac{-a/t+b}{-c/t+d} \right) + \frac{c}{t} B \left(\frac{a}{c} \right) - dB \left(\frac{b}{d} \right) \right\}$
 $= (dt-c) B \left(\frac{bt-a}{dt-c} \right) - dt B \left(\frac{b}{d} \right) - (-c) B \left(\frac{-a}{-c} \right) = B^{\sigma J}(t).$

The continuity condition ($\mathcal{B}3$) is easily checked.

§ 2. Lévy's projective invariance. Let $[\alpha, \beta]$ be an interval and $t \in (\alpha, \beta)$. Lévy's normalized Brownian bridge $\xi^{[\alpha,\beta]}(t)$ is defined; (2) $\xi^{[\alpha,\beta]}(t) \equiv \mathcal{N}\{B(t) - B(\alpha) - E[B(t) - B(\alpha)]B(\beta) - B(\alpha)]\}$

$$=\sqrt{\frac{\beta-\alpha}{(t-\alpha)(\beta-t)}}B(t)-\sqrt{\frac{\beta-t}{(\beta-\alpha)(t-\alpha)}}B(\alpha)-\sqrt{\frac{t-\alpha}{(\beta-\alpha)(\beta-t)}}B(\beta),$$

where \mathscr{N} is the normalizing constant which makes $\xi^{[\alpha,\beta]}(t)$ a standard Gaussian random variable.

Let
$$g = \begin{pmatrix} a, b \\ c, d \end{pmatrix}^{-1} \in SL(2, \mathbb{R})$$
, and $[\tilde{\alpha}, \tilde{\beta}]$ be the image of $[\alpha, \beta]$. That is,
 $\alpha = \frac{a\tilde{\alpha} + d}{c\tilde{\alpha} + d}$ and $\beta = \frac{a\tilde{\beta} + d}{c\tilde{\beta} + d}$.

Let above normalization be applied to the process $B^{\mathfrak{g}}(t)$. $\xi^{\mathfrak{g}, [\tilde{a}, \tilde{\beta}]}(t)$

$$\begin{split} &= \sqrt{\frac{\tilde{\beta} - \tilde{\alpha}}{(t - \tilde{\alpha})(\tilde{\beta} - t)}} B^{g}(t) - \sqrt{\frac{\tilde{\beta} - t}{(\tilde{\beta} - \tilde{\alpha})(t - \tilde{\alpha})}} B^{g}(\tilde{\alpha}) - \sqrt{\frac{t - \tilde{\alpha}}{(\tilde{\beta} - \tilde{\alpha})(\tilde{\beta} - t)}} B^{g}(\tilde{\beta}), \\ &= \sqrt{\frac{\tilde{\beta} - \tilde{\alpha}}{(t - \tilde{\alpha})(\tilde{\beta} - t)}} \left\{ (ct + d) B\left(\frac{at + b}{ct + d}\right) - ct B\left(\frac{a}{c}\right) - dB\left(\frac{b}{d}\right) \right\} - \dots - \dots \\ &= \sqrt{\frac{(d\beta - b)/(-c\beta + a) - (d\alpha - b)/(-c\alpha + a)}{[\{t(-c\alpha + a) - (d\alpha + b)\}/(-c\alpha + a)][\{(d\beta + b) - t(-c\beta + a)\}/(-c\beta + a)]}} \\ &\times (ct + d) B\left(\frac{at + b}{ct + d}\right) - \dots - \dots \\ &= \sqrt{\frac{\beta - \alpha}{\{(at + b) - \alpha(ct + d)\}\{\beta(ct + d) - (at + b)\}}}} \ |ct + d| sgn(ct + d) B(\dots) - \dots \\ (set \ s = (at + b)/(ct + d)) \\ &= \sqrt{\frac{\beta - \alpha}{(s - \alpha)(\beta - s)}}} \ sgn(ct + d) B(s) - \dots - \dots \\ &= \varepsilon \xi^{[\alpha, \beta]}(g^{-1}t; \omega), \qquad \varepsilon = sgn(ct + d). \end{split}$$

Thus, we obtain

Theorem 2. $\xi^{g,[g\alpha,g\beta]}(gs;\omega) = \varepsilon \xi^{[\alpha,\beta]}(s;\omega), \quad \varepsilon = \pm 1.$

As a corollary, we get the projective invariance property of P. Lévy. Corollary 3 (P. Lévy [3]).

 $E[\xi^{[\alpha,\beta]}(t)\,\xi^{[\alpha,\beta]}(s)] = E[\xi^{[g\alpha,g\beta]}(gt)\,\xi^{[g\alpha,g\beta]}(gs)].$

§ 3. Partial invariance of self-similar processes. For any α , $0 < \alpha < 2$, there exists a Gaussian process $X^{\alpha}(t)$, $t \in \mathbf{R}$, called self-similar process of index α which satisfies the following conditions:

 $(S1) \quad X^{\alpha}(0) = 0,$

 $(S2) \quad \boldsymbol{E} |X^{\alpha}(t) - X^{\alpha}(s)|^{2} = |t - s|^{\alpha}.$

(S3) $X^{\alpha}(t; \omega)$ is continuous in t for almost all ω .

Let us consider the following transformations of the path of X^{α} ,

 $(\mathcal{T}1') \quad Y_1^{\alpha}(t) \equiv X^{\alpha}(t+s) - X^{\alpha}(s), \ s \in \mathbf{R},$

 $(\mathfrak{T}2')$ $Y_2^{\alpha}(t) \equiv e^{-u\alpha/2} X^{\alpha}(e^u t), u \in \mathbf{R}$ and

 $(\mathcal{T}3') \quad Y_3^{\alpha}(t) \equiv sgn^{\varepsilon}(t) |t|^{\alpha} X^{\alpha}(-1/t), \ \varepsilon = 0 \text{ or } 1.$

We may expect that there exists a similar invariance property for selfsimilar processes as the case of Brownian motion. Contrary to our expectation, $(\mathcal{T}1')-(\mathcal{T}3')$ do not make a group.

 \mathbf{Set}

$$G_u = \left\{ g = \begin{pmatrix} a, b \\ 0, 1/a \end{pmatrix} \in SL(2, R) \right\}$$

and

$$G_{i} = \left\{ h = \begin{pmatrix} c, 0 \\ d, 1/c \end{pmatrix} \in SL(2, \mathbf{R}) \right\}.$$

Define actions of g and h as follows,

$$(3) X^{\alpha, q}(t) \equiv |a|^{-\alpha} X^{\alpha}(a^2t + ab) - |a|^{-\alpha} X^{\alpha}(ab)$$

and

(4)
$$X^{\alpha,h}(t) \equiv \left| dt + \frac{1}{c} \right|^{\alpha} X^{\alpha} \left(\frac{ct}{dt+1/c} \right) - |ct|^{-\alpha} X^{\alpha}(c).$$

Then it holds,

Proposition 4. i) The processes $X^{\alpha, g}$ and $X^{\alpha, h}$ are self-similar processes of index α .

ii) $(X^{\alpha, g})^{g'}(t) = X^{\alpha, gg'}(t)$ and $(X^{\alpha, h})^{h'}(t) = X^{\alpha, hh'}(t)$ hold for any $g, g' \in G_u$ and $h, h' \in G_i$.

iii) There exist $g, g' \in G_u$ and $h, h' \in G_i$ which satisfy gh = h'g' as an element of SL(2, R) and

(5)
$$(X^{\alpha, g})^{h}(t) \neq (X^{\alpha, h'})^{g'}(t).$$

Proof. The proofs of i) and ii) are simple so are omitted. For iii) it is enough to give an example. Let

$$g = \begin{pmatrix} 1/2, & -\sqrt{3}/3 \\ 0, & 2 \end{pmatrix}, \qquad g' = \begin{pmatrix} 1, & -\sqrt{3} \\ 0, & 1 \end{pmatrix},$$
$$h = \begin{pmatrix} 1 & 0 \\ \sqrt{3}/6, & 1 \end{pmatrix} \text{ and } h' = \begin{pmatrix} 1/3 & 0 \\ \sqrt{3}/3, & 3 \end{pmatrix}.$$

It is easy to see that the above elements give us an example of (5).

S. TAKENAKA

Note. Even the case of Brownian motion, if we take one of the transforms $\tilde{B}_{\mathfrak{s}}(t) \equiv |t| B(1/t)$, $\tilde{B}_{\mathfrak{s}}(t) \equiv |t| B(-1/t)$ and $\tilde{B}_{\mathfrak{s}}(t) \equiv tB(1/t)$ instead of $(\mathcal{T}3)$, we fail to find the full group action on B(t).

References

- Hida, T.: Brownian Motion. Iwanami, Tokyo (in Japanese) (1975); Springer, Berlin (in English) (1980).
- [2] Hida, T., Kubo, I., Nomoto, H., and Yoshizawa, H.: On projective invariance of Brownian motion. Publ. Res. inst. Math. Sci., 4, 595-609 (1968).
- [3] Lévy, P.: Processus Stochastiques et Mouvement Brownien. Gauthier-Villars, Paris (1965).
- [4] Takenaka, S.: On projective invariance of multi-parameter Brownian motion. Nagoya Math. J., 67, 89-120 (1977).
- [5] Yoshizawa, H.: Rotation group of Hilbert space and its application to Brownian motion. Proc. of the International Conference on Functional Analysis and Related Topics, pp. 414-425 (1970).