19. On the Representation of the Scattering Kernel for the Elastic Wave Equation

By Hideo Soga
Faculty of Education, Ibaraki University
(Communicated by Kôsaku Yosida, m. J. A., March 14, 1988)

Introduction. In Yamamoto [7] and Shibata and Soga [4] we have known that we can construct the scattering theory for the elastic wave equation corresponding to the theory for the scalar-valued wave equation formulated by Lax and Phillips [1, 2]. On Lax and Phillips' formulation Majda [3] obtained a representation of the scattering kernel (operator), which is very useful for consideration on the inverse scattering problems (cf. Majda [3], Soga [5, 6], etc.). In the present note we shall give the similar representation of the scattering kernel for the elastic wave equation considered in Shibata and Soga [4].
\S 1. Main results. Let Ω be an exterior domain in $\boldsymbol{R}_{x}^{n}\left(x=\left(x_{1}, \cdots, x_{n}\right)\right)$ whose boundary $\partial \Omega$ is a compact C^{∞} hypersurface. Throughout this note we assume that the dimension n is odd and $\geqq 3$. Let us consider the elastic wave equation

$$
\begin{cases}\left(\partial_{t}^{2}-\sum_{i, j=1}^{n} a_{i j} \partial_{x_{i}} \partial_{x_{j}}\right) u(t, x)=0 & \text { in } \boldsymbol{R} \times \Omega \tag{1.1}\\ B u(t, x)=0 & \text { on } \boldsymbol{R} \times \partial \Omega \\ u(0, x)=f_{1}(x), \quad \partial_{t} u(0, x)=f_{2}(x) & \text { on } \Omega\end{cases}
$$

Here, $a_{i j}$ are constant $n \times n$ matrices whose (p, q)-component $a_{i p j q}$ satisfies

$$
\begin{align*}
& a_{i p j q}=a_{p i j q}=a_{j q i p}, \quad i, j, p, q=1,2, \cdots, n, \tag{A.1}\\
& \sum_{i, p, j, q=1}^{n} a_{i p j q q_{j q} \varepsilon_{i p} \geqq \delta} \sum_{i, p=1}^{n}\left|\varepsilon_{i p}\right|^{2} \quad \text { for Hermitian matrices }\left(\varepsilon_{i j}\right), \tag{A.2}
\end{align*}
$$

(A.3) $\sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j}$ has characteristic roots of constant multiplicity

$$
\text { for } \xi=\left(\xi_{1}, \cdots, \xi_{n}\right) \in \boldsymbol{R}^{n}-\{0\}
$$

and the boundary operator B is of the form

$$
B u=\left.u\right|_{\partial \Omega} \quad \text { or }\left.\quad \sum_{i, j=1}^{n} \nu_{i}(x) a_{i j} \partial_{x_{j}} u\right|_{\partial \Omega},
$$

where $\nu=\left(\nu_{1}, \cdots, \nu_{n}\right)$ is the unite outer vector normal to $\partial \Omega$. We denote by $U(t)$ the mapping: $f=\left(f_{1}, f_{2}\right) \rightarrow\left(u(t, \cdot), \partial_{t} u(t, \cdot)\right)$ associated with (1.1), and by $U_{0}(t)$ the one associated with the equation in the free space ($\Omega=\boldsymbol{R}^{n}$).

Under the assumptions (A.1)-(A.3) it has been proved in Shibata and Soga [4] that the wave operators $W_{ \pm}=\lim _{t \rightarrow \pm \infty} U(-t) U_{0}(t)$ are well defined and complete (cf. § 3 of [4]). Let $\left\{\lambda_{j}(\xi)\right\}_{j=1, \cdots, d}\left(\lambda_{1}<\cdots<\lambda_{d}\right)$ be the eigenvalues of $\sum_{i, j=1}^{n} a_{i j} \xi_{i} \xi_{j}$, and let $P_{j}(\xi)$ be the projection into the eigenspace of $\lambda_{j}(\xi)$. For the data $f=\left(f_{1}, f_{2}\right)(\in \mathcal{S})$ in the free space, let us set

$$
T_{0} f(s, \omega)=\sum_{j=1}^{a} \lambda_{j}(\omega)^{1 / 4} P_{j}(\omega)\left(-\lambda_{j}(\omega)^{1 / 2} \partial_{s}^{(n+1) / 2} \tilde{f}_{1}+\partial_{s}^{(n-2) / 2} \tilde{f}_{2}\right)\left(\lambda_{j}(\omega)^{1 / 2} s, \omega\right),
$$

where $\tilde{f}_{i}(s, \omega)=\int_{x \cdot \omega=s} f_{i}(x) d S_{x},(s, \omega) \in R \times S^{n-1}$. Then T_{0} becomes the translation representation for the equation in the free space (cf. § 2 in Shibata and Soga [4]). We define the scattering operator S by $S=T_{0} W_{+}^{-1} W_{-} T_{0}^{-1}$, as Lax and Philips [1, 2] did. S is a unitary operator from $L^{2}\left(\boldsymbol{R} \times S^{n-1}\right)$ to itself.

The main purpose of this note is to give a representation of S similar to Majda's in [3]. Derivation of this representation is based on the following

Theorem 1. Let (A.1)-(A.3) be satisfied, and assume that
(A.4) every slowness hypersurface $\Sigma_{j}=\left\{\xi: \lambda_{j}(\xi)=1\right\}$ is strictly convex. Then, for any f with $T_{0} f \in \mathcal{S}\left(\boldsymbol{R} \times S^{n-1}\right)$ we have

$$
\begin{aligned}
T_{0} f(s, \theta)= & \lim _{t \rightarrow+\infty}(\pi t)^{(n-1) / 2} \sum_{j=1}^{d} K_{j}(\theta)^{1 / 2}\left|\partial_{\xi} \lambda_{j}(\theta)\right|^{(n+1) / 2} \lambda_{j}(\theta)^{-(2 n+1) / 4} \\
& \cdot\left(U_{0}(t) f\right)_{2}\left(2^{-1} \lambda_{j}(\theta)^{-1 / 2} t \partial_{\xi} \lambda_{j}(\theta)+s \lambda_{j}(\theta)^{1 / 2} \theta\right),
\end{aligned}
$$

where $K_{j}(\theta)$ denotes the Gaussian curvature of Σ_{j} at $\lambda_{j}(\theta)^{-1 / 2} \theta$.
Let $v_{l}(t, x ; \omega)$ be the solution of the equation

$$
\begin{cases}\partial_{t}^{2} v-\sum_{i, j=1}^{n} a_{i j} \partial_{x_{i}} \partial_{x_{j}} v=0 & \text { in } \boldsymbol{R} \times \Omega \\ B v=-2^{-1}(-2 \pi i)^{1-n} \lambda_{l}(\omega)^{-n / 4} B\left\{\delta\left(t-\lambda_{l}(\omega)^{-1 / 2} \omega \cdot x\right) P_{l}(\omega)\right\} & \text { on } \boldsymbol{R} \times \partial \Omega \\ v=0 \quad \text { if } t \text { is small enough. } & \end{cases}
$$

$v_{l}(t, x ; \omega)$ is an $n \times n$ matrix of C^{∞} functions of x and ω with the value of the distribution in t.

Theorem 2. Let us assume (A.1)-(A.4), and set

$$
\begin{aligned}
S_{0}(s, \theta, \omega)=\sum_{i, j=1}^{d} \int_{\partial \Omega} & \lambda_{i}(\theta)^{-n / 4}\left\{P_{i}(\theta)\left(\partial_{t}^{n-2} N v_{j}\right)\left(\lambda_{i}(\theta)^{-1 / 2} \theta \cdot x-s, x ; \omega\right)\right. \\
& \left.-\lambda_{i}(\theta)^{-1 / 2} N(\theta \cdot x) P_{i}(\theta)\left(\partial_{t}^{n-1} v_{j}\right)\left(\lambda_{i}(\theta)^{-1 / 2} \theta \cdot x-s, x ; \omega\right)\right\} d S_{x},
\end{aligned}
$$

where $N=\sum_{i, j=1}^{n} \nu_{i}(x) a_{i j} \partial_{x_{j}}$. Then we have
$(S k)(s, \theta)=\iint_{\boldsymbol{R} \times S^{n-1}} S_{0}(s-t, \theta, \omega) k(t, \omega) d t d \omega+k(s, \theta), \quad k(s, \omega) \in C_{0}^{\infty}\left(\boldsymbol{R} \times S^{n-1}\right)$.
§ 2. Proof of Theorem 1. For the scalar-valued wave equation Lax and Phillips [1] obtained a theorem similar to Theorem 1 (see Theorem 2.4 in Chapter IV of [1]), but for the proof we need more precise analysis. A key lemma is the following

Lemma 1. Let η and ζ be any elements in \boldsymbol{R}^{n} with $\eta \neq 0$. Then, for any $k(s, \omega) \in S\left(\boldsymbol{R} \times S^{n-1}\right)$ we have

$$
\begin{aligned}
& \int_{S^{n-1}} \partial_{s}^{(n-1) / 2} k\left(t \lambda_{j}(\omega)^{-1 / 2} \omega \cdot \eta+\lambda_{j}(\omega)^{-1 / 2} \omega \cdot \zeta-t, \omega\right) d \omega \\
& =2(2 \pi /|\eta| t)^{(n-1) / 2}\left\{k\left(t \lambda_{j}\left(\omega_{j}^{+}\right)^{-1 / 2} \omega_{j}^{+} \cdot \eta+\lambda_{j}\left(\omega_{j}^{+}\right)^{-1 / 2} \omega_{j}^{+} \cdot \zeta-t, \omega_{j}^{+}\right)\right. \\
& \quad \cdot K_{j}\left(\omega_{j}^{+}\right)^{-1 / 2}\left|\partial_{\xi} \lambda_{j}\left(\omega_{j}^{+}\right)\right|^{-1} \lambda_{j}\left(\omega_{j}^{+}\right)^{(n+1) / 2} \\
& \quad+2(-2 \pi /|\eta| t)^{(n-1) / 2} k\left(t \lambda_{j}\left(\omega_{j}^{-}\right)^{-1 / 2} \omega_{j}^{-} \cdot \eta+\lambda_{j}\left(\omega_{j}^{-}\right)^{-1 / 2} \omega_{j}^{-} \cdot \zeta-t, \omega_{j}^{-}\right) \\
& \left.\quad \cdot K_{j}\left(\omega_{j}^{-}\right)^{-1 / 2}\left|\partial_{\xi} \lambda_{j}\left(\omega_{j}^{-}\right)\right|^{-1} \lambda_{j}\left(\omega_{j}^{-}\right)^{(n+1) / 2}\right\}+0\left(t^{-n / 2}\right) \quad \text { as }|t| \rightarrow \infty,
\end{aligned}
$$

where ω_{j}^{+}(resp. ω_{j}^{-}) denotes the point in S^{n-1} at which $\lambda_{j}(\omega)^{-1 / 2} \omega \cdot \eta$ is maximum (resp. minimum).

In view of Theorem 2.1 in Shibata and Soga [4], we see that the limit in Theorem 1 is equal to the limit of

$$
\begin{align*}
& 2^{-n} \pi^{(1-n) / 2} t^{(n-1) / 2} \sum_{j, l=1}^{d} K_{j}(\theta)^{1 / 2}\left|\partial_{\xi} \lambda_{j}(\theta)\right|^{(n+1) / 2} \lambda_{j}(\theta)^{-(2 n+1) / 4} \int_{S^{n-1}} \lambda_{l}(\omega)^{-n / 4} P_{l}(\omega) \tag{1.2}\\
& \quad \cdot \partial_{s}^{(n-1) / 2} T_{0} f\left(\lambda_{l}(\omega)^{-1 / 2} \omega \cdot 2^{-1} \lambda_{j}(\theta)^{-1 / 2} t \partial_{\xi} \lambda_{j}(\theta)+\lambda_{l}(\omega)^{-1 / 2} \omega \cdot \lambda_{j}(\theta)^{1 / 2} s \theta-t, \omega\right) d \omega
\end{align*}
$$

(as $|t| \rightarrow \infty$). Applying Lemma 1 to each integral in (1.2) yields that (1.2) converges to $T_{0} f(s, \theta)$ as $|t| \rightarrow \infty$. Thus Theorem 1 is obtained.
§3. Proof of Theorem 2. The methods of the proof are improvements of those in Soga [6]. Originally, the idea is due to Majda [3].

Lemma 2. Let the data f in (1.1) satisfy $T_{0} W_{-}^{-1} f(s, \omega) \in C_{0}^{\infty}\left(\boldsymbol{R} \times S^{n-1}\right)$, and set $k=T_{0} W_{-}^{-1} f$. Then we have

$$
\begin{aligned}
(U(t) f)_{2}(x)= & 2^{-1}(2 \pi)^{1-n} \sum_{j=1}^{d} \int_{S^{n-1}} \lambda_{j}(\omega)^{-n / 4} P_{j}(\omega) \partial_{s}^{(n-1) / 2} k\left(\lambda_{j}(\omega)^{-1 / 2} x \cdot \omega-t, \omega\right) d \omega \\
& +\sum_{j=1}^{d} \iint_{R \times S^{n-1}} \partial_{t}^{(n-1) / 2} v_{j}(t+s, x ; \omega) k(s, \omega) d s d \omega
\end{aligned}
$$

Lemma 3. Let $v(t, x)$ be an $n \times n$ matrix of C^{∞} functions of x with the value of the distribution in t and satisfy

$$
\begin{cases}\partial_{t}^{2} v-\sum_{i, j=1}^{n} a_{i j} \partial_{x_{i}} \partial_{x_{j}} v=0 & \text { in } \boldsymbol{R} \times \Omega \\ v=0 & \text { if } t<r_{1}\end{cases}
$$

(for some constant r_{1}). Set $N=\sum_{i, j=1}^{n} \nu_{i}(x) a_{i j} \partial_{x_{j}}$. Then we have

$$
\begin{aligned}
\lim _{\tau \rightarrow \infty} & (\pi \tau)^{(n-1) / 2} K_{j}(\theta)^{1 / 2}\left|\partial_{\xi} \lambda_{j}(\theta)\right|^{(n+1) / 2} \lambda_{j}(\theta)^{-(n+1) / 4} \\
& \cdot \partial_{t}^{(n-1) / 2} v\left(t+\tau, 2^{-1} \lambda_{j}(\theta)^{-1 / 2} \partial_{\xi} \lambda_{j}\left(\theta_{j}\right) \tau+s \lambda_{j}(\theta)^{1 / 2} \theta\right) \\
& =\int_{\partial \Omega}\left\{P_{j}(\theta) N \partial_{t}^{n-2} v\left(\lambda_{j}(\theta)^{-1 / 2} \theta \cdot x-s+t, x\right)\right. \\
& \left.-\lambda_{j}(\theta)^{-1 / 2} N(\theta \cdot x) P_{j}(\theta) \partial_{t}^{n-1} v\left(\lambda_{j}(\theta)^{-1 / 2} \theta \cdot x-s+t, x\right)\right\} d S_{x} .
\end{aligned}
$$

Lemmas 2 and 3 are extensions of Lemmas 1.3 and 1.4 in Soga [6] respectively. The proof of Lemma 2 is similar to that of Lemma 1.3 in [6], but Lemma 3 cannot be obtained in the same way as Lemma 1.4 in [6], the reason of which is that the forms of the fundamental solutions for the corresponding wave equations are fairly different.

Theorem 2 is derived from Theorem 1, Lemma 2 and Lemma 3 by the same procedures as Theorem 1 in [6] was derived from Proposition 1.2, Lemma 1.3 and Lemma 1.4 in [6].

References

[1] P. D. Lax and R. S. Phillips: Scattering Theory. Academic Press, New York (1967).
[2] -: Scattering theory for the acoustic equation in an even number of the space dimensions. Indiana Univ. Math. J., 22, 101-134 (1972).
[3] A. Majda: A representation formula for the scattering operator and the inverse problem for arbitrary bodies. Comm. Pure Appl. Math., 30, 165-194 (1977).
[4] Y. Shibata and H. Soga: Scattering theory for the elastic wave equation (to appear).
[5] H. Soga: Singularities of the scattering kernel for convex obstacles. J. Math. Kyoto Univ., 22, 729-765 (1983).
[6] -: Singular support of the scattering kernel for the acoustic equation in inhomogeneous media. Comm. in P.D.E., 9, 467-502 (1984).
[7] K. Yamamoto: Exponential energy decays of solutions of elastic wave equations with Dirichlet condition (to appear).

