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50. Zeros of L(s,%) in Short Segments on the Critical Line
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(Communicated by Kunihiko KODAIRA, M. J. A., May 12, 1988)

1. Let L(s, %) be the Dirichlet L-function with X primitive (mod k),
k>1. Let N(T, %) be the number of zeros of L(s, X) on the segment s=1/2
+it, 0<t<T. The purpose of the present note is to give a brief proof of

Theorem. Let T>=kP*, U=(kET)"®** with small e0. Then we
have

N(T+U,0)—N|(T,x)>».UlogT.

This should be compared with Karatsuba [2], and we stress that a
minor modification of our argument can yield a slight improvement upon
his result. There are two important ingredients in our argument: One is
Atkinson’s method [1], and the other is Weil’s result [6] on character sums.
More specifically, we have combined Selberg’s ideas [5] with ours [3]-[4].

2. Here we outline our proof of the theorem. The details will be
published elsewhere.

Let L(s, X)=+(s, Y)L(1—s, X) be the functional equation for L(s, x), and
put X(&, 2)=+"""(1/2+1t, X)L(1/24it, X) which is real for real t. Also, as
in [5], let a(v) be the coefficient in the Dirichlet series expansion for {(s)-'?,
and let f(v)=a()(og &/v)/log & with & to be determined later. We put

p(t, )= ;5 X)BRy= M-,

And we consider the estimation of
1=jU ot IH X(T+t-+2, ) |n(T+ b+, %) |Zdu‘2e—<tw>“dt,
0

-UlogT

Ulog T
J=I

-UlogT

IH L(—;——l-i(T—l-t-i-u), X>772(T+t+u, X)du—lee“‘/U”dt,
0

where H 1, (kT)0/»* <UL T ¢,
Invoking the result of [4] we have, as a first step,
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X (—”&)i@”)dt dudv.

ViV
Then we apply a modified version of Atkinson’s splitting argument to this
product of values of L-functions. For this sake let a, b be two positive
integers such that (a,b)=1 and (ab, k)=1. And we write, for Re (2)>1,
Re (w)> 1’
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L(z, \)L(w, )= {a Z=‘,M+ > +am§ HmX(n)m-*n->.

am<on
The first sum is X(a)X(b)a~-“b~*L(z+ w, X,) where X, is the principal character
(mod k). The other two sums are treated as in [3, V], and we get, for Re (2)
<1, Re (w)<1,
L(z, )L(w, ) =X(a)X(D)a~*b~*L(z+w, X,)
(2) + X)Xk e b (2 +w—1)L(z+w—1) pfllk A—p**=?)

x{r A—w) | I'd—2) }+z(a)X(b)az-*bw-l(g,,,,,(z, W3 0+ Gy, 2; ).

I'(z) I'(w)
Here
9ap(Z w3 N=2a)a'~*{I" (&) (w)(e*** —1)(&* — 1)} Z Z X(m)X(am—+mn)
xz -1 w le—n(y 2xic/b) e-—m(z+ay—2niac/b) 5(0)
Xj j 1 g~ k(v-2xic/b) { 1_ g-*(@+ay-taiac/d) - Tz +ay) }dxdy’

where §(c)=1 if ¢=0 and 6(c)=0 if ¢+0, and the contour C is as,in [3].
In (2) we set 2=1/2+i(T+t+u), w=1/2—U(T+1t+v), a=vw,/(w, v,), b=
v,/ (v vv,), and insert it into (1). The contribution to I of the first two
terms on the right of (2) can be estimated as in [5], and we see that it is
LK UH**(log &), providing (log&)"'<H<(log &)-'*. Hence, for such H we
have

I«UET-+ UHS/Z(IOg &) Z (”1”2”3”4)

(v k) 1

(4) e-<t/0>2ga,b(_§+z(:ﬂ+t+u), F—iT+t+0), x)dt ’ dudv,

where a, b are as above.
On the other hand, when Re(z) <0, Re (w)>1, we may deduce, from (3),
9o W3 D) =hg (2, W35 D)+ hg o(Z W3 1) ;

a b(z,w X) Z O1-ye w(,n’x ab)e—anukn/bJ z(1+x)-—we-21rinz/abkdx

0o, 13 0D = 5 g )T+ gy =Tk,

fg=n
where akak=1 (mod b) and abab:l (mod k). Then we have to find an
analytic continuation of A, , (2, 1—2z—ir; %) which is defined for Re(z)<<0
and real z. This is accomplished, as in [3, II], by computing the truncated
Voronoi formula for the sum

A@)=>0,(n,%; ab)e"“”"g‘"/”,

nsx

which yields, uniformly for X>1, <1, and arbitrary a, b,
[T 1a@rdo <.+ X+,
pe

and thus a continuation of %, ,(z,1—z—1ir; X) to Re (2)<8/4. With this we
may follow closely the argument of [3]-[4], and show that the infinite
integral in (4) is €abT*(kT/U)'”~. Namely we have

I UH" (log &)+ U&T <+ &T< (kT | U)".
In much the same way we can show the same estimate for J. Then,
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choosing &=T°® appropriately we obtain the upper bound € UH**(log &)~'”
for both I and J, providing (kT)*/*+**<U<T'-¢. The rest of the proof is
much the same as the corresponding part of [5].
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