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1. Introduction. It was pr.oved by Nagell [5] that there exist infi-
nitely many quadratic number fields whose class numbers are divisible by
a given integer. Similar results .or quadratic number fields were obtained
by several other authors. Since quadratic number fields are "pure" exten-
sions (in the sense o Ishida [2]) over the rationals Q o degree 2, these
results tempt us to ask:

For any integers n(2)and m(l), do there exist infinitely many pure
extensions over Q of degree n whose class numbers are divisible by m?
When each prime factor of m divides n, "genus theory" (cf. Roquette and
Zassenhause [8]) solves this problem (affirmatively). See also Ishida [1] and
Madan [4, p. 117]. In other cases, it has been solved, so ar, only when

2in (by using the above result for quadratic fields) and when 3In or m=2
by Nakano [6, 7], and the problem seems very difficult or general n and m.

The purpose of this note is to solve a function field analogue of the
above problem. Let t be a fixed prime number, F be the prime field of g
elements and X be a fixed indeterminate. We deal with pure extensions
over the rational function field F(X), i.e., extensions of the i.orm

F(X, f(X)/)/F(X) with (n, )= 1 and f(X) e F(X). But, or the sake o
simplicity, we consider only those for which the degree (over F(X)) is an
odd prime number p. In view of "genus theory" for function fields (cf.
Madan [3] or 2.1), we confine ourselves to the case in which the non p part
of the class group is "large". We shall prove

Theorem 1. Let p be an odd prime number different from , and rp
be the number of the irreducible factors of Xp-1 in the polynomial ring
F,[X]. For any finite abelian group A of rank 2(rp-1) with exponent rela-
tively prime to p, there exist infinitely many pure extensions over F,(X)
of degree p for which the divisor class group of degree zero contains a sub-
group isomorphic to A.
Here, we need the assumption that the exponent of the abelian group A is
relatively prime to for a technical reason.

Further, we shall prove a similar theorem concerning the ideal class
groups of "imaginary" and "real" pure extensions over F,(X) which is an
analogue o a result of Yamamoto [10] on those o imaginary and real
quadratic number fields.

The point of the proofs of our theorems is that a certain type of pure
extensions over Fe(X) of degree p (those in 2.2) allow the use of "genus
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theory" for studying the non p part of their class groups.
2. Proof of Theorem 1.
2.1. "Genus theory". Let K be a function field .of one variable over

a finite field k, E be a finite separable geometric1) extension over K and CE

be the divisor class group of degree zero of E. For any natural number a
and any prime number p, we put

R(C) :-the p-rank of the finite abelian group C,
p,(E/K) :=the number of prime divisors of K for which each of the

ramification indices in E is divisible by p,
o(E/K) :=the largest integer n such that (p) divides the degree of

E over K.
Then, we have

Lemma 1o R(C).%p(E/K)-I--o(E/K).
When a=l, this assertion was proved by Madan [3]. The proof o the
general case goes through similarly, and we shall not give it here.

2.2. Proof of Theorem 1. Let p be an odd prime number different
from , r, be the number of irreducible factors of X"- 1 in F[X] and N be
a natural number relatively prime to gp. Consider the function field

K--K,=F(X, (X-1)1/).
This is a pure extension over F(X) o degree p.

Proposition. The divisor class group of degree zero of the function
field K,, contains a subgroup isomorphic to the 2(r-1)-fold direct product
of the cyclic group of order N.

Proof. Put Y=(X-I)/. Consider the ollowing subfields o the
function field K=K,;

K F(Y, (Y -t- 1)/) and K=F(Y, (Y"+ 1)/).
Since (p, N)= 1, we see that K K=F(Y) and K.K=K. Since p is odd,
the polynomial Y/ 1 splits into r, prime actors in the ring F[Y]. Clearly,
these r prime divisors are ully ramified in the extension K/F(Y). On the
other hand, we easily see that the prime divisor of F(Y) corresponding to
the zero of 1/Y is unramified and splits into r, prime divisors in the exten-
sion K/F(Y), and that it is ully ramified in K/F(Y). From these, we
see that at least 2r prime divisors of K are ully ramified in the extension

K/K .o degree N. Hence, we obtain our assertion irom Lemm 1.
Now, by taking various integers N, we obtain the assertion of

Theorem 1.
Remark. By considering Artin-Schreier extensions over F(X) defined

by the equations of type Y-Y X, we can prove that or ny finite abelian
group A o rank -1 and with exponent relatively prime to , there exist
infinitely mny cyclic extensions over F(X) o degree g or which the divisor
class group o degree zero contains a subgroup isomorphic to A.

3. "Imaginary" and "real" pure unction fields. Let oox denote the
prime divisor o the rational 2unction field F(X) corresponding to the zero

1) This means that E=k.
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Of 1/X. We regard the prime divisor cz as the "infinite" prime of F(X),
and consequently, the polynomial ring F[X] as the ring of integers of the
rational function field F(X). For a finite separable extension K over F(X),
we denote by C.z the ideal class group of the integral closure of the integer
ring F[X] in K.
As before, p is a prime number different r.om . For the behavior of the
infinite prime divisor cx in a pure extension over F(X) of degree p, there
are three possible types;

Type I" o is fully ramified,
Type R: oox is unramified and splits into r prime divisors,
Type E: otherwise.

Those of Type I (resp. Type R) are called imaginary (resp. real) pure ex-
tensionS. As is easily seen, pure extensions over F(X) of degree p and of
Type E can exist only when p g--l, and hence may be viewed as rather
exceptional. So, we consider only imaginary and real ones. We prove

Theorem 2. Let p be an odd prime number different from and r be
as before. Then, for any finite abelian group A of rank 2(r,--1) (resp.
rank r--1) with exponent relatively prime to p, there exist infinitely many
imaginary (resp. real) pure extensions K over F(X) of degree p for which
the ideal class group C,x contains a subgroup isomorphic to A.

To prove Theorem 2, we need the ollowing

Lemma 2 (cf. Rosen [9, Proposition 1]). Let K be a finite separable
geometric extension over F(X), and x and (-Px be, respectively, the divisor
group of degree zero and the principal divisor group of K, both supported
on prime divisors of K over oox. Assume that at least one prime divisors
of K over c are of degree 1. Then, there is an exact sequence;

0 >0/ >C >C. >0.

Proof of Theorem 2. Let N be natural number relatively prime to
p, and K:K,, be the pure extension as in 2.2. We easily see that K is
real and satisfies the assumption o] Lemm& 2. Since there are r, prime
divisors in K over oo x, the finite abelian group/x is generated by r,-1
elements. Hence, we see ]rom Proposition and Lemm& 2 that the ideal
class group C,x contains a subgroup isomorphic to the (r,-1)-]old direct
product o] the cyclic group o] order N. Next, consider the ]unction field

K’=K’,,=F(X, ((X+ 1)--X,)’/,).
We easily see that K’ is isomorphic to K by I+(1/X)++X. On the other
hand, since the degree of the polynomial (X+I)--X is not divisible by
p, the infinite prime divisor oox is fully ramified in K’. Therefore, we see
from Proposition and Lemma 2 that the ideal class group C,,x of the
imaginary pure extension K’ over F(X) contains a subgroup isomorphic to
the 2(r-l)-2old direct product of the cyclic group of order N. Finally.
by taking various integers N, we obtain Theorem 2.
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