49. On the Class Groups of Pure Function Fields

By Humio Ichimura
Department of Mathematics, Faculty of Science, University of Tokyo
(Communicated by Shokichi Iyanaga, m. J. A., May 12, 1988)

§ 1. Introduction. It was proved by Nagell [5] that there exist infinitely many quadratic number fields whose class numbers are divisible by a given integer. Similar results for quadratic number fields were obtained by several other authors. Since quadratic number fields are "pure" extensions (in the sense of Ishida [2]) over the rationals \boldsymbol{Q} of degree 2, these results tempt us to ask:

For any integers $n(>2)$ and $m(>1)$, do there exist infinitely many pure extensions over \boldsymbol{Q} of degree n whose class numbers are divisible by m ? When each prime factor of m divides n, "genus theory" (cf. Roquette and Zassenhause [8]) solves this problem (affirmatively). See also Ishida [1] and Madan [4, p. 117]. In other cases, it has been solved, so far, only when $2 \mid n$ (by using the above result for quadratic fields) and when $3 \mid n$ or $m=2$ by Nakano [6, 7], and the problem seems very difficult for general n and m.

The purpose of this note is to solve a function field analogue of the above problem. Let ℓ be a fixed prime number, F_{ℓ} be the prime field of ℓ elements and X be a fixed indeterminate. We deal with pure extensions over the rational function field $\boldsymbol{F}_{d}(X)$, i.e., extensions of the form $\boldsymbol{F}_{\ell}\left(X, f(X)^{1 / n}\right) / \boldsymbol{F}_{\ell}(X)$ with $(n, \ell)=1$ and $f(X) \in \boldsymbol{F}_{\ell}(X)$. But, for the sake of simplicity, we consider only those for which the degree (over $F_{b}(X)$) is an odd prime number p. In view of "genus theory" for function fields (cf. Madan [3] or § 2.1), we confine ourselves to the case in which the non p part of the class group is "large". We shall prove

Theorem 1. Let p be an odd prime number different from ℓ, and r_{p} be the number of the irreducible factors of $X^{p}-1$ in the polynomial ring $\boldsymbol{F}_{\ell}[X]$. For any finite abelian group A of rank $2\left(r_{p}-1\right)$ with exponent relatively prime to ℓp, there exist infinitely many pure extensions over $F_{\ell}(X)$ of degree p for which the divisor class group of degree zero contains a subgroup isomorphic to A.
Here, we need the assumption that the exponent of the abelian group A is relatively prime to ℓ for a technical reason.

Further, we shall prove a similar theorem concerning the ideal class groups of "imaginary" and "real" pure extensions over $\boldsymbol{F}_{\ell}(X)$ which is an analogue of a result of Yamamoto [10] on those of imaginary and real quadratic number fields.

The point of the proofs of our theorems is that a certain type of pure extensions over $F_{l}(X)$ of degree p (those in $\S 2.2$) allow the use of "genus
theory" for studying the non p part of their class groups.
§ 2. Proof of Theorem 1.
§2.1. "Genus theory". Let K be a function field of one variable over a finite field k, E be a finite separable geometric ${ }^{1)}$ extension over K and C_{E} be the divisor class group of degree zero of E. For any natural number a and any prime number p, we put
$R_{p^{a}}\left(C_{E}\right)$:= the p^{a}-rank of the finite abelian group C_{E},
$\rho_{p^{a}}(E / K):=$ the number of prime divisors of K for which each of the ramification indices in E is divisible by p^{a},
$\omega_{p^{a}}(E / K):=$ the largest integer n such that $\left(p^{a}\right)^{n}$ divides the degree of E over K.
Then, we have
Lemma 1. $\quad R_{p^{a}}\left(C_{E}\right) \geq \rho_{p^{a}}(E / K)-1-\omega_{p^{a}}(E / K)$.
When $a=1$, this assertion was proved by Madan [3]. The proof of the general case goes through similarly, and we shall not give it here.
§ 2.2. Proof of Theorem 1. Let p be an odd prime number different from ℓ, r_{p} be the number of irreducible factors of $X^{p}-1$ in $F_{\ell}[X]$ and N be a natural number relatively prime to ℓp. Consider the function field

$$
K=\hat{K}_{N, p}=F_{\ell}\left(X,\left(X^{p N}-1\right)^{1 / p}\right)
$$

This is a pure extension over $\boldsymbol{F}_{\ell}(X)$ of degree p.
Proposition. The divisor class group of degree zero of the function field $K_{N, p}$ contains a subgroup isomorphic to the $2\left(r_{p}-1\right)$-fold direct product of the cyclic group of order N.

Proof. Put $Y=\left(X^{p N}-1\right)^{1 / p}$. Consider the following subfields of the function field $K=K_{N, p}$;

$$
K_{1}=F_{\ell}\left(Y,\left(Y^{p}+1\right)^{1 / p}\right) \quad \text { and } \quad K_{2}=F_{l}\left(Y,\left(Y^{p}+1\right)^{1 / N}\right)
$$

Since $(p, N)=1$, we see that $K_{1} \cap K_{2}=F_{\ell}(Y)$ and $K_{1} \cdot K_{2}=K$. Since p is odd, the polynomial $Y^{p}+1$ splits into r_{p} prime factors in the ring $F_{\delta}[Y]$. Clearly, these r_{p} prime divisors are fully ramified in the extension $K / F_{\ell}(Y)$. On the other hand, we easily see that the prime divisor of $F_{\ell}(Y)$ corresponding to the zero of $1 / Y$ is unramified and splits into r_{p} prime divisors in the extension $K_{1} / F_{\ell}(Y)$, and that it is fully ramified in $K_{2} / \boldsymbol{F}_{\ell}(Y)$. From these, we see that at least $2 r_{p}$ prime divisors of K_{1} are fully ramified in the extension K / K_{1} of degree N. Hence, we obtain our assertion from Lemma 1.

Now, by taking various integers N, we obtain the assertion of Theorem 1.

Remark. By considering Artin-Schreier extensions over $\boldsymbol{F}_{6}(X)$ defined by the equations of type $Y^{\ell}-Y=X^{N}$, we can prove that for any finite abelian group A of rank $\ell-1$ and with exponent relatively prime to ℓ, there exist infinitely many cyclic extensions over $F_{\ell}(X)$ of degree ℓ for which the divisor class group of degree zero contains a subgroup isomorphic to A.
§3. "Imaginary" and "real" pure function fields. Let ∞_{X} denote the prime divisor of the rational function field $\boldsymbol{F}_{\ell}(X)$ corresponding to the zero

1) This means that $E \cap \bar{k}=k$.
of $1 / X$. We regard the prime divisor ∞_{x} as the "infinite" prime of $F_{\ell}(X)$, and consequently, the polynomial ring $F_{\ell}[X]$ as the ring of integers of the rational function field $\boldsymbol{F}_{\ell}(X)$. For a finite separable extension K over $\boldsymbol{F}_{\ell}(X)$, we denote by $C_{K, X}$ the ideal class group of the integral closure of the integer ring $F_{\ell}[X]$ in K.
As before, p is a prime number different from ℓ. For the behavior of the infinite prime divisor ∞_{x} in a pure extension over $F_{\ell}(X)$ of degree p, there are three possible types;

Type I: $\quad \infty_{x}$ is fully ramified,
Type R : ∞_{X} is unramified and splits into r_{p} prime divisors,
Type E: otherwise.
Those of Type I (resp. Type R) are called imaginary (resp. real) pure extensions. As is easily seen, pure extensions over $F_{\ell}(X)$ of degree p and of Type E can exist only when $p \mid \ell-1$, and hence may be viewed as rather exceptional. So, we consider only imaginary and real ones. We prove

Theorem 2. Let p be an odd prime number different from ℓ and r_{p} be as before. Then, for any finite abelian group A of rank 2 $\left(r_{p}-1\right)$ (resp. rank $r_{p}-1$) with exponent relatively prime to ℓp, there exist infinitely many imaginary (resp. real) pure extensions K over $F_{\ell}(X)$ of degree p for which the ideal class group $C_{K, X}$ contains a subgroup isomorphic to A.

To prove Theorem 2, we need the following
Lemma 2 (cf. Rosen [9, Proposition 1]). Let K be a finite separable geometric extension over $F_{\ell}(X)$, and \mathscr{D}_{X}^{0} and \mathscr{P}_{X} be, respectively, the divisor group of degree zero and the principal divisor group of K, both supported on prime divisors of K over ∞_{x}. Assume that at least one prime divisors of K over ∞_{x} are of degree 1 . Then, there is an exact sequence;

$$
0 \longrightarrow \mathscr{D}_{X}^{0} / \mathscr{P}_{X} \longrightarrow C_{K} \longrightarrow C_{K, X} \longrightarrow 0
$$

Proof of Theorem 2. Let N be a natural number relatively prime to ℓp, and $K=K_{N, p}$ be the pure extension as in $\S 2.2$. We easily see that K is real and satisfies the assumption of Lemma 2. Since there are r_{p} prime divisors in K over ∞_{X}, the finite abelian group $\mathscr{D}_{X}^{0} / \mathscr{P}_{X}$ is generated by $r_{p}-1$ elements. Hence, we see from Proposition and Lemma 2 that the ideal class group $C_{K, X}$ contains a subgroup isomorphic to the ($r_{p}-1$)-fold direct product of the cyclic group of order N. Next, consider the function field

$$
K^{\prime}=K_{N, p}^{\prime}=F_{\ell}\left(X,\left((X+1)^{p N}-X^{p N}\right)^{1 / p}\right) .
$$

We easily see that K^{\prime} is isomorphic to K by $1+(1 / X) \leftrightarrow X$. On the other hand, since the degree of the polynomial $(X+1)^{p N}-X^{p N}$ is not divisible by p, the infinite prime divisor ∞_{X} is fully ramified in K^{\prime}. Therefore, we see from Proposition and Lemma 2 that the ideal class group $C_{K^{\prime}, X}$ of the imaginary pure extension K^{\prime} over $\boldsymbol{F}_{\ell}(X)$ contains a subgroup isomorphic to the $2\left(r_{p}-1\right)$-fold direct product of the cyclic group of order N. Finally, by taking various integers N, we obtain Theorem 2.

References

[1] M. Ishida: Class numbers of algebraic number fields of Eisenstein type. J. Number Theory, 2, 404-413 (1970).
[2] --: The genus field of algebraic number fields. Lecture Notes in Math., vol. 555, Springer, Berlin-Heidelberg-New York (1976).
[3] M. L. Madan: Class numbers and ramification in fields of algebraic functions. Arch. Math., 19, 121-124 (1968).
[4] -: On class numbers of algebraic number fields. J. Number Theory, 2, 116-119 (1970).
[5] T. Nagell: Über die Klassenzahl imaginär quadratischer Zahlkörper. Abh. Math. Sem. Univ. Hamburg, 1, 140-150 (1922).
[6] S. Nakano: Class numbers of pure cubic fields. Proc. Japan Acad., 59A, 263-265 (1983).
[7] -: On the 2-rank of the ideal class groups of pure number fields. Arch. Math., 42, 53-57 (1984).
[8] P. Roquette and H. Zassenhause: A class rank estimate for algebraic number fields. J. London Math. Soc., 44, 31-38 (1969).
[9] M. Rosen: S-units and S-class group in algebraic function fields. J. Algebra, 26, 98-108 (1973).
[10] Y. Yamamoto: On unramified Galois extensions of quadratic number fields. Osaka J. Math., 7, 57-76 (1970).

