47. Azumaya Algebras Split by Real Closure^t

By Teruo KANZAKI^{*)} and Yutaka WATANABE^{**)}

(Communicated by Shokichi IYANAGA, M. J. A., May 12, 1988)

1. Introduction. Let K be a commutative ring with identity element. For a (local) signature $\sigma: K \rightarrow GF(3) = \{0, \pm 1\}$, (which satisfies $\sigma(-1) = -1$, for any $a, b \in K \sigma(ab) = \sigma(a)\sigma(b)$, and $\sigma(a) = 0$ or $\sigma(a) = \sigma(b)$ imply $\sigma(a+b) = \sigma(b)$ cf. [4]), $P_{\sigma} = \{x \in K \mid \sigma(x) = 0 \text{ or } 1\}$ satisfies the following conditions; $P_{\sigma} + P_{\sigma}$ $\subseteq P_{\sigma}, P_{\sigma} \subseteq P_{\sigma}, P_{\sigma} \subseteq P_{\sigma}, P_{\sigma} \cup (-P_{\sigma}) = K$, and $\mathfrak{p}_{\sigma} = P_{\sigma} \cap (-P_{\sigma})$ is a prime ideal of K. Then P_{σ} is an ordering in the meaning of [6]. Conversely, an ordering P of *K* defines a signature $\sigma_P: K \rightarrow GF(3); \sigma_P(x) = 0$ if $x \in P \cap (-P), \sigma_P(x) = 1$ if $x \in P$ and $x \notin -P$, and $\sigma_P(x) = -1$ if $x \in -P$ and $x \notin P$. Therefore, we can identify σ and P_{σ} , (or P and σ_{P}). By Sig(K), we denote the set $\{\sigma: K \rightarrow \sigma\}$ GF(3) signature on K (={ $P \mid \text{ordering on } K$ }). Let P_0 be an ordering on K. For the prime ideal $\mathfrak{p}_0 = P_0 \cap (-P_0)$ of K, $(\overline{K}_0, \overline{P}_0)$ denotes the totally ordered quotient field of the totally ordered domain $(K/\mathfrak{p}_0, P_0/\mathfrak{p}_0)$, and R_0 the real closure of the totally ordered field $(\overline{K}_0, \overline{P}_0)$. Let A be a K-algebra with identity element such that A is a finitely generated projective K-module. Then, there are elements $a_1, a_2, \dots, a_n \in A$ and $\psi_1, \psi_2, \dots, \psi_n \in \operatorname{Hom}_K(A, K)$ such that $a = \sum_{i=1}^{n} \psi_i(a) a_i$ for all $a \in A$. The trace map $t_r: A \to K; a \to K$ $\sum_{i=1}^{n} \psi_i(aa_i)$ defines a quadratic K-module (A, ρ) by $\rho(a) = \operatorname{tr}(a^2)$ for $a \in A$. If $L \supset K$ is a commutative Galois extension with a finite Galois group G, then $\operatorname{tr}(a) = t_{G}(a) := \sum_{\sigma \in G} \sigma(a)$ holds for all $a \in A$ (cf. [2]). Let A be an Azumaya *K*-algebra. We shall say A to be P_0 -split, if $A \otimes_K R_0$ is a matrix ring over R_0 . Furthermore, we shall say that A is *real split*, if A is P-split for all $P \in \text{Sig}(K)$. By $B(K, P_0)$ and $B^r(K)$, we denote the subgroups $\{[A] \in B(K) \mid A \in A \}$ $A: P_0$ -split} and $\{[A] \in B(K) | A: \text{real split}\}$ of the Brauer group B(K) of K, respectively. Then, $B^r(K) = \bigcap_{P \in \text{Sig}(K)} B(K, P)$. Let $L \supseteq K$ be a commutative ring extension with common identity element. Then we put $\operatorname{Sig}_{P0}(L/K)$ $:= \{P \in \operatorname{Sig}(L) | P \cap K = P_0\}, \text{ and } Q(K) := \bigcap_{P \in \operatorname{Sig}(K)} P. Q(K | L) \text{ denotes the}$ intersection of all P in Sig(K) such that Sig_P(L/K) = \emptyset . A quadratic Kmodule (M, q) is said to be positive semi-definite, if q(x) belongs to Q(K)for all $x \in M$. In this paper, we prove the following theorem :

Theorem. Let $L \supset K$ be a Galois extension of commutative rings with a finite Galois group G in the meaning of [2]. Then, the following assertions hold :

1) If the quadratic K-module (L, ρ) is positive semi-definite, then $B(L/K)(:=\{[A] \in B(K) | A \otimes_{\kappa} L \sim L : A \text{ is split by } L\})$ is included in $B^{r}(K)$.

^{*)} Department of Mathematics, Kinki University.

^{**&#}x27; Department of Mathematics, Osaka Women's University.

^{†)} In memory of Professor Akira HATTORI.

2) If |G| is odd, then $B(L/K) \subseteq B^r(K)$.

3) Suppose that $G = \langle \sigma \rangle$ is a cyclic group, and $A = \Delta(f, L, \Phi, G) = \sum_i J_{\sigma^i}$ is a generalized crossed product of L and G with any factor set (cf. [3]). Then, there is an L-L-isomorphism $g : \bigotimes_L^n J_\sigma \to L$, where n = |G| and $\bigotimes_L^n J_\sigma$ $= J_\sigma \bigotimes_L J_\sigma \bigotimes_L \cdots \bigotimes_L J_\sigma$. A is real split if and only if $g(\bigotimes^n x) \in Q(K | L)$ for all $x \in J_\sigma$, where $\bigotimes^n x = x \otimes \cdots \otimes x \in \bigotimes^n J_\sigma$.

2. P-splitting Azumaya K-algebra. Let $P \in \text{Sig}(K)$, $\mathfrak{p}=P \cap (-P)$, and let $(\overline{K}, \overline{P})$ be the totally ordered quotient field of totally ordered domain $(K/\mathfrak{p}, P/\mathfrak{p})$ and R a real closure of $(\overline{K}, \overline{P})$.

Definition. For an Azumaya K-algebra A, the trace map $\operatorname{tr} \otimes I_{\overline{K}}$: $A \otimes_{\overline{K}} \overline{K} \to \overline{K}$; $a \otimes \overline{c} \longrightarrow \operatorname{tr} (a) \overline{c}$ defines a quadratic form $\rho \otimes I_{\overline{K}}$: $A \otimes_{\overline{K}} \overline{K} \to \overline{K}$; $\alpha \longrightarrow \operatorname{tr} \otimes I_{\overline{K}} (\alpha^2)$. By $\operatorname{sgn}_{(\overline{K},\overline{P})} (A \otimes_{\overline{K}} \overline{K}, \rho \otimes I_{\overline{K}})$, we denote the value of signature of the quadratic form $\rho \otimes I_{\overline{K}'}$, in the ordinary meaning, under the totally ordered field $(\overline{K}, \overline{P})$.

Lemma 1. For any Azumaya K-algebra A, $\operatorname{sgn}_{(\overline{K},\overline{F})}(A \otimes_k \overline{K}, \rho \otimes I_{\overline{K}})$ is either $\sqrt{[A \otimes_{\overline{K}} \overline{K} : \overline{K}]}$ or $-\sqrt{[A \otimes_{\overline{K}} \overline{K} : \overline{K}]}$, hence we can define

 $\operatorname{sgn}_{P}(A) := \operatorname{sgn}_{(\overline{K},\overline{P})}(A \otimes_{\overline{K}} \overline{K}, \rho \otimes I_{\overline{K}})/\sqrt{[A \otimes_{\overline{K}} \overline{K} : \overline{K}]}, \text{ so } \operatorname{sgn}_{P}(A) = \pm 1.$ Then, we have the following;

- 1) $\operatorname{sgn}_{P}(A) = +1$ if and only if A is P-split.
- 2) If $[A \otimes_{\kappa} \overline{K} : \overline{K}]$ is odd, then $\operatorname{sgn}_{P}(A) = +1$.
- 3) [B(K): B(K, P)] = 2.

Proof. Since R is a real closed field, $A \otimes_{\kappa} R$ is isomorphic to either a matrix ring R_n over R or a matrix ring D_m over a quaternion R-algebra $D = R \oplus Ri \oplus Rj \oplus Rij$ with $i^2 = j^2 = -1$ and ij = -ji. (i) The case $A \otimes_{\kappa} R \cong R_n$, $[A \otimes_{\kappa} \overline{K} : \overline{K}] = n^2$: Let $\{e_{pq} | p, q = 1, 2, \dots, n\}$ be the matrix units of $A \otimes_{\kappa} R$, and $X = \sum_{p,q} X_{pq} e_{pq}$ any element of $A \otimes_{\kappa} R$ with $X_{pq} \in R$. Easily, we get

 $\operatorname{tr} \otimes I_R(X^2) = n \sum_{p,q} X_{pq} X_{qp} = n(X_{11}^2 + X_{22}^2 + \dots + X_{nn}^2 + 2 \sum_{p < q} X_{pq} X_{qp}).$

By a regular linear transformation;

$$\begin{array}{ll} X_{pp}\!=\!Y_{pp}\,; & p\!=\!1,2,\cdots,n, \\ \text{for } p\!<\!q\,; & \begin{cases} X_{pq}\!=\!Y_{pq}\!+\!Y_{qp} \\ X_{qp}\!=\!Y_{pq}\!-\!Y_{qp}, \end{cases} \end{array}$$

we have $\rho \otimes I_R(X) = \operatorname{tr} \otimes I_R(X^2) = n\{Y_{11}^2 + Y_{22}^2 + \dots + Y_{nn}^2 + 2\sum_{p < q} (Y_{pq}^2 - Y_{qp}^2)\},$ hence $\operatorname{sgn}_{(\overline{R},\overline{P})}(A \otimes_K \overline{K}, \rho \otimes I_{\overline{R}}) = \operatorname{sgn}_R(A \otimes_K R, \rho \otimes I_R) = n.$ (ii) The case $A \otimes_K R$ $\cong D_m$, $[A \otimes_K \overline{K} : \overline{K}] = 4m^2$: For the matrix units $\{e'_{pq} | p, q = 1, 2, \dots, m\}$ of $A \otimes_K R$, any element $X \in A \otimes_K R$ is expressed as $X = \sum_{p,q} (W_{pq} + X_{pq}i + Y_{pq}j + Z_{pq}ij)e'_{pq}$ for $W_{pq}, X_{pq}, Y_{pq}, Z_{pq} \in R$. By the same computation as in (i), we get

$$\rho \otimes I_{R}(X) = 4m \{ \sum_{p} (W_{pp}^{2} - X_{pp}^{2} - Y_{pp}^{2} - Z_{pp}^{2}) + 2 \sum_{p < q} (W_{pq} W_{qp} - X_{pq} X_{qp} - Y_{pq} Y_{qp} - Z_{pq} Z_{qp}) \},$$

and $\operatorname{sgn}_{(\overline{K},\overline{P})}(A \otimes_{\overline{K}} \overline{K}, \rho \otimes I_{\overline{K}}) = \operatorname{sgn}_{R}(A \otimes_{\overline{K}} R, \rho \otimes I_{R}) = -2m(=-n)$. Thus, 1) and 3) follow from the above results in two cases (i) and (ii). 2) If n is odd, then the case (ii) is impossible.

Lemma 2. Let $L \supset K$ be a commutative Galois extension with a finite Galois group G, and suppose $\operatorname{Sig}_{P}(L/K) \neq \emptyset$.

1) If $A = \Delta(f, L, \Phi, G)$ is a generalized crossed product of L and G with any factor set f and $\Phi: G \rightarrow \operatorname{Pic}_{\kappa}(L)$, then $\operatorname{sgn}_{P}(A) = +1$.

2) $B(L/K) \subseteq B(K, P)$.

Proof. By [5]; Proposition 9, Sig_P (L/K) ≠ Ø implies $L \otimes_{\kappa} R = e_1 R$ $\oplus e_2 R \oplus \cdots \oplus e_n R$, where e_1, e_2, \cdots, e_n are orthogonal idempotents with 1⊗1 $= e_1 + e_2 + \cdots + e_n$. 1) If sgn_P (A) = -1, then $A \otimes_{\kappa} R$ becomes a matrix ring D_m over a quaternion *R*-algebra *D*, where 2m = n = |G|. Since $L \otimes_{\kappa} R$ is a maximal commutative subalgebra of $A \otimes_{\kappa} R$, $A \otimes_{\kappa} R$ has a left ideal decomposition $A \otimes_{\kappa} R = A \otimes_{\kappa} R e_1 \oplus \cdots \oplus A \otimes_{\kappa} R e_n$. The dimension of a minimal left ideal of D_m over *D* is equal to *m*, so we get $[(A \otimes_{\kappa} R)e_i: R] \ge 4m = 2n i =$ $1, 2, \cdots, n$. However, we have $n^2 = [A \otimes_{\kappa} R : R] = \sum_{i=1}^n [A \otimes_{\kappa} R e_i: R] \ge 2n^2$, this is a contradiction. Hence, sgn_P (A) = +1. 2) Let [A] be any element in B(L/K). By [1]; Theorem 5.7, there exists an Azumaya *K*-algebra A_0 such that A_0 has *L* as a maximal commutative subalgebra and $[A_0] = [A]$. By [4]; Proposition 3, there are a factor set *f* and a group homomorphism $\Phi: G \rightarrow \operatorname{Pic}_{\kappa}(L)$ such that $A_0 \cong A(f, L, \Phi, G)$. Hence, by 1) we get $[A] = [A_0] \in B(K, P)$.

Let $L \supset K$ be a cyclic Galois extension of commutative rings with a Galois group $G = \langle \sigma \rangle$ of order n, and $A = \varDelta(f, L, \Phi, G)$ a generalized crossed product of L and G with any factor set f and $\Phi: G \rightarrow \operatorname{Pic}_{K}(L)$. Then, A is expressed as $\sum_{i} \oplus J_{\sigma^{i}}$, where $J_{\sigma^{i}} = \bigotimes_{L}^{i} J_{\sigma} := J_{\sigma} \bigotimes_{L} J_{\sigma} \otimes \cdots \otimes_{L} J_{\sigma}$ (*i* times tensor product of J_{σ} over L), and there is an L-L-isomorphism $g: \bigotimes_{L}^{n} J_{\sigma} \rightarrow L$.

Lemma (cf. [5]; Proposition 9). Let $L \supset K$ be a commutative Galois extension with a finite abelian Galois group G, and suppose $\operatorname{Sig}_{P}(L/K) = \emptyset$. For any element $a \in K$, $a \in P$ if and only if there exists an element α in $L \otimes_{\kappa} R$ such that $a \otimes 1 = N_{G}(\alpha) := \prod_{\sigma \in G} \sigma(\alpha)$ in $\overline{K} = K \otimes_{\kappa} \overline{K}$.

Proposition 3. Let $L, A = \Delta(f, L, \Phi, G) = \sum_i \oplus J_{\sigma^i}$ and $g : \otimes_L^n J_{\sigma} \to L$ be as above. For any $x \in J_{\sigma}$, $g(\otimes^n x)$ is contained in K. Suppose $\operatorname{Sig}_P(L/K) = \emptyset$. Then, $\operatorname{sgn}_P(A) = +1$ if and only if $g(\otimes^n x)$ belongs to P for every $x \in J_{\sigma}$.

Proof. From *L*-*L*-isomorphism $g: \bigotimes_{L}^{n} J_{\sigma} \to L$, it follows that there is an element u in $\bigotimes_{L}^{n} J_{\sigma}$ such that g(u) = 1 and $\bigotimes_{L}^{n} J_{\sigma} = Lu = uL$. Let x be any element of J_{σ} . For any prime ideal \mathfrak{p} of K, the localization $L_{\mathfrak{p}} = L \bigotimes_{K} K_{\mathfrak{p}} = \sum_{i} \oplus J_{\sigma} \otimes_{K} K_{\mathfrak{p}} = \sum_{i} \oplus L_{\mathfrak{p}} u_{\sigma}^{i}$ is also a Galois extension with Galois group G, and $A \bigotimes_{K} K_{\mathfrak{p}} = \sum_{i} \oplus J_{\sigma} \otimes_{K} K_{\mathfrak{p}} = \sum_{i} \oplus L_{\mathfrak{p}} u_{\sigma}^{i}$ is a free $L_{\mathfrak{p}}$ -module with a free basis $u_{\sigma}, u_{\sigma}^{2}, \dots, u_{\sigma}^{n}$. Elements $x \otimes 1 \in J_{\sigma} \bigotimes_{K} K_{\mathfrak{p}}$ and $(\bigotimes^{n} x) \otimes 1, \bigotimes^{n} u_{\sigma} \in \bigotimes_{L}^{n} J_{\sigma} \bigotimes_{K} K_{\mathfrak{p}}$ are expressed as $x \otimes 1 = \alpha u_{\sigma}, (\bigotimes^{n} x) \otimes 1 = N_{\sigma}(\alpha) \cdot \bigotimes^{n} u_{\sigma}$ and $\bigotimes^{n} u_{\sigma} = \beta u \otimes 1$ by $\alpha, \beta \in L_{\mathfrak{p}}$, and $N_{\sigma}(\alpha)$ $= \prod_{i=1}^{n} \sigma^{i}(\alpha) \in K_{\mathfrak{p}}$. However, $\bigotimes^{n} u_{\sigma}$ belongs to the center of $A_{\mathfrak{p}}$, hence $g \otimes I(\bigotimes^{n} u_{\sigma}) = \beta \in K_{\mathfrak{p}}$. Therefore, $g(\bigotimes^{n} x) \otimes 1$ belongs to $K_{\mathfrak{p}}$ for every prime ideal \mathfrak{p} of K, so we have $g(\bigotimes^{n} x) \in K$. Now, we suppose $\operatorname{Sig}_{P}(L/K) = \emptyset$. Considering a localization of A as above for the prime ideal $\mathfrak{p} = P \cap -P$ of K, it follows that $A \bigotimes_{K} R = \sum_{i} \bigoplus (L \bigotimes_{K} R)(\bigotimes^{i} u_{\sigma} \otimes 1)$ is a crossed product of $L \bigotimes_{K} R$ and $G = \langle \sigma \rangle$ with the factor set $g \otimes I(\bigotimes^{n} u_{\sigma}) = \beta \otimes 1 \in N_{\sigma}(L \bigotimes_{K} R)$, that is well known, $A \bigotimes_{K} R \sim R$ if and only if $g \otimes I(\bigotimes^{n} u_{\sigma}) = \beta \otimes 1 \in N_{\sigma}(L \bigotimes_{K} R)$, that is, $g(\bigotimes^{n} x) \otimes 1 \in N_{\sigma}(L \bigotimes_{K} R)$ for every $x \in J_{\sigma}$. By the above lemma, we get

No. 5]

that A is P-split, i.e. $\operatorname{sgn}_P(A) = +1$, if and only if $g(\otimes^n x) \in P$ for every $x \in J_{\sigma}$.

Corollary 4. Let $L \supset K$ be a commutative Galois extension with a cyclic Galois group $G = \langle \sigma \rangle$ of order n. For any generalized crossed product $A = \varDelta(f, L, \Phi, G)$ with an L-L-isomorphism $g : \otimes^n J_{\sigma} \rightarrow L$, A is P-split if and only if either $\operatorname{Sig}_P(L/K) \neq \emptyset$ or $(\operatorname{Sig}_P(L/K) = \emptyset$ and) $g(\otimes^n x) \in P$ for every $x \in J_{\sigma}$. Especially, if K is a field and $A = \varDelta(L, G, a) = \sum_i \bigoplus L(u_{\sigma})^i$ is a crossed product of L and $G = \langle \sigma \rangle$ with $(u_{\sigma})^n = a \neq 0$ ($\in K$), then A is P-split if and only if either $\operatorname{Sig}_P(L/K) \neq \emptyset$ or a > 0 under the ordering P on K.

Remark (cf. [7]). Let K and L be fields such that $L \supset K$ a cyclic Galois extension with Galois group $G = \langle \sigma \rangle$ of order 2m, and $A = \varDelta(L, G, a) = L \oplus Lu$ $\oplus \cdots \oplus Lu^{2m-1}$ a cyclic K-algebra with $u^{2m} = a$. When L_0 denotes the $\langle \sigma^m \rangle$ fixed subfield of L, then one can choose b in L_0 with $L = L_0$ (\sqrt{b}). For the trace form ρ_{L_0} of L_0 , we denote by $\rho_{L_0}b$ a quadratic form $\rho_{L_0}b: L_0 \to K$; $x \longrightarrow \operatorname{tr}(bx^2)$. Then, the trace form (A, ρ_A) of A is expressed as follows;

 $\rho_{A} \approx \langle 4m \rangle \{ \rho_{L_{0}} \perp a \rho_{L_{0}} \perp (\rho_{L_{0}}b) \perp - a(\rho_{L_{0}}b) \} \perp H,$

where H is a hyperbolic space.

3. Proof of Theorem.

Lemma (cf. [5]; Theorem). Let $L \supset K$ be a commutative Galois extension with a finite Galois group G.

1) The quadratic K-module (L, ρ) is positive semi-definite if and only if $\operatorname{Sig}_{P}(L/K) \neq \emptyset$ for all $P \in \operatorname{Sig}(K)$.

2) If |G| is odd, then (L, ρ) is positive semi-definite.

The proof of Theorem is obtained as follows; 1) From the above lemma and Lemma 2, it follows that $B(L/K) \subseteq B(K, P)$ for every $P \in \text{Sig}(K)$, and so $B(L/K) \subseteq B^r(K)$. 2) is obtained by the above lemma and 1). 3) Suppose that $L \supset K$ is a commutative cyclic Galois extension with a Galois group G of order n, and that $A = \sum_i \bigoplus J_{\sigma^i}$ is a generalized crossed product of L and G with L-L-isomorphism $g : \bigotimes^n J_{\sigma} \to L$. By Corollary 4, A is real split, if and only if $g(\bigotimes^n x)$ belongs to P for all $x \in J_{\sigma}$ and every $P \in \text{Sig}(K)$ with $\text{Sig}_P(L/K) = \emptyset$, that is, $g(\bigotimes^n x) \in Q(K/L)$ for all $x \in J_{\sigma}$.

References

- M. Auslander and O. Goldman: The Brauer group of a commutative ring. Trans. Amer. Math. Soc., 97, 367-409 (1960).
- [2] S. U. Chase, D. K. Harrison, and A. Rosenberg: Galois theory and Galois cohomology of commutative rings. Memoirs, Amer. Math. Soc., 52, (1965).
- [3] T. Kanzaki: On generalized crossed product and Brauer group. Osaka J. Math., 5, 175-188 (1968).
- [4] ——: A note on infinite torsion primes of a commutative ring. Methods in Ring Theory. NATO ASI Series C, 129, 197-200 (1984).
- [5] ——: Totally real commutative algebras (preprint).
- [6] T. Y. Lam: An introduction to real algebra. Rocky Mountain J. Math., 14, 767– 814 (1984).
- [7] Y. Watanabe: Trace forms of algebras (in preparation).