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Introduction and results. Let K be a compact set in R (m--2 or 3)
with smooth boundary 3K. Let F(t) be a simple closed surface in R (or
curve in R2) such that K is contained in the interior of the region sur-
rounded by F(t). The time-dependent space domain 2(t) is a bounded set
in R whose boundary 32(t) consists of two components, i.e.

atg(t)-- aK U F(t).
Such domains D(t) (0 t T) generate a non-cylindrical domain U 0_<t

D(t) {t}, where we consider the following initial value problem for the
heat convection equation of Boussinesq approximation"

u+(u.V)u=--
V_ff_p + {1--r(O--To)}g+,hu in
P( 1 ) ] div u=0 in t,

t O+ (u. V)0 h0 in 9,
(2) ulo,(t)=fl(x, t), OIo=To>O, OIr(t)=O .for any t e [0, T],
( 3 ) u l, =0 a, O I, =0 h in 9(0),
where u=u(x, t) is the velocity field, p=p(x, t) is the pressure and O=O(x, t)
is the temperature; ,, , , p and g=g(x) are the kinematic viscosity, the
thermal conductivity, the coefficient of volume expansion, the density at
8= To and the gravitational vector, respectively. According to Boussinesq
approximation, p is a fixed constant. The differential operators h and V
mean those for x variables only. Concerning the Navier-Stokes equation,
Fujita-Sauer [1], Otani-Yamada [6], Inoue-Wakimoto [2] and H. Morimoto
[5] studied the initial value problem or the time periodic problem in some
time-dependent domains. As for the stationary problem for the heat con-
vection equation, we refer to, for instance, P.H. Rabinowitz [7] and D.H.
Sattinger [8]. We note, as a physical example, the convection of the earth’s
mantle which may occur in the interior of the earth.

We make some simplifying assumptions on fl(x, t) and 9(0.
(A1) fl--=-0. (This may not be physically realistic.)
(A2) There exists an open ball B such that 9(t)cB.
(A3) F(t) and OK are smooth (say, of class C8). Also F(t)X{t} (OKt<T)
changes smoothly (say, of class C*) with respect to t. (Namely, the domain
/= U 0<t<r F(t)X {t} has the same properties as those in [1] and [6].)
(A4) g(x) is a bounded and continuous vector function in R\int K.



144 K. OEDA [Vol. 64 (A),

Our main results are as follows. (The definition of weak solutions,
strong solutions and the function spaces are to be given in the next section.)

Theorem 1. Assume (A1)-(A4). If a e H(D(0)) and h e L(t2(0)), then
there exists a weak solution of (1)-(3) for any time interval [0, T].

Theorem 2. Under the same assumptions of Theorem 1, if a e H(tg(0)),
h e W(/2(0)), hl= To and hit(0)-0, then there is a positive number r0 de-
pending on a, h and To such that the initial value problem (1)-(3) has a
unique strong solution on [0, r0].

The author wishes to express his hearty thanks to Professor H. Fujita
and Professor T. Suzuki for their valuable advice.

Notations and formulation. For a bounded domain ) in R with
smooth boundary /2, we write Ilu] or simply lull instead of lul (). The
inner product in L(t9) is denoted by (u, v)(,), (u, v), or (u, v). The solenoi-
dal function spaces are defined as usual"

D(9)={ e C(9) div .=0},
H(t2)=the completion of D.(t9) under the L(2)-norm,
H.(/2)=the completion of D.(2) under the W[(tg)-norm.

For the time-dependent domain = JO_t_T ()}( {t}, described in the pre-
ceding section, we put

/() { e Cg() div =0},
/.()=the completion of/() under the norm ,.(.),

where (u) Vu II
/(t)={ e C(t2(t) UOK) suppcD(t) UOK and =0 on0K},
/(t)=the completion of/(t9) under the norm ,(.),

where ,(u)=l[Vul[ and/2(t) UOK= U0st_r (t2(t) UOK) X {t}.
Moreover,

)(t) { e/() e=0 at t= T},
(t)={/e/(D) =0 at t= T},
cU()={ e/(t9) ess.sup. ]fp(t)II,((, < +co},

O_tNT

O_t_T

We introduce an auxiliary function t(x, t) solving

( 4 ) JO[0--To, 0It(t)--0 for any t e [0, T],
[01=0=V(x) in 9(0),

where ](x) satisfies A___0 in 9(0) with ][= To and ]lr(0)=0.
Under these preparations we can define the weak solution of (1)-(3).
Definition 1. U-t(u, O) defined in is a weak solution of (1)-(3) if

the following (i) and (ii) are satisfied"

(ii) For all q=t(, @) e ()() the equality

(5) I {(U,t)+(U,(u.V)@+(u,h)+x(0, h)+((1--cffO--To))g,)}dt

3n
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holds, where A=’(a, h).
We will now define the strong solution of (1)-(3). First of all, we

consider the following proper lower semi-continuous functions and subdif-
ferential operators"

1 ([Vul+lVOl)dx i U eHI(B) W(B),
( 6 ) (U)=

if U e (H(B) LZ(B)) (H(B) (B)),
( 7 ) 3(U)=*(A(B)u, -AO)=A(B)U,
where B=BK, A(B)=--uP(B)A and P(B) is the orthogonal projection
from L(B) onto H(B). It is known that D(A(B)), the domain of the oper-
ator A(B), is equal to (W(B) H(B)) (W(B) W(B)). We next define a
closed convex set K(t) of H(B) L(B) by

K(t) {U e H(B) L(B) U=0 a.e. in B O(t)}
for each t e [0, T] and write its indicator function by I(t), that is, I(t)(U)
=0 if U e K(t) and I(t)(U)=+ if U e (H(B)xL(B))K(t). Here we
define another p.l.s.c, function
( 8 ) ’(U)=(U)+I(t)(U) for each t e [0, T].
We consider the subdifferential operator. It holds that D(’) {U e H(B)

LZ(B) U(t) e (W(O(t)) H(O(t))) (W(O(t)) [(O(t))), U[xa(t)=0} and
3t(U) {f e H(B) LZ(B) P(O(t))f(t)=A(O(t))U[a(t,} where P(O(t))=t(P
(O(t)), 1,)). (See [6] and [9].) Then we can reduce the initial value

problem (1)-(3) to the one for the following abstract heat convection equa-
tion (AHC) in H(B) L(B)

(AHC) dV +t(V(t))+F(t)V(t)+M(t)V(t) P(B)f(t), t e [0, T],
dt

where V t(v, 0), F(t)V(t)=*(P(B)(v.V)v, (v.V)O), M(t)V(t)=t(P(B)aOg,
(V.V)), f=t(f, fz)=t((l_(_To))g 0) and P(B)=’(P(B), 1). (See [6] and
[9].)

We define the strong solution of (AHC) as follows.

Definition 2. Let V" [0, S]H(B) LZ(B), S e (0, T]. Then V is called
a strong solution of the initial value problem f.or (AHC) on [0, S] if it satis-
fies the following properties (i), (ii) and (iii).

( ) V e C([0, S] H(B) LZ(B)) and dV/dt e Lz(O, S H,(B) LZ(B)).
(ii) V(t) e D(t) or a.e. t e [0, S] and there is a function G=t(g, gz)

e Lz(O, S;H(B) L(B)) such that G(t)e 3’(V(t)) and

d
_

G(t) +F(t)Y(t) +M(t)V(t)=P(B)f(t)
dt

hold for a.e. t e [0, S].

(iii) V(0)=t(6, -0(0)) holds in H(B) xLZ(B) where , h and mean
the natural extension of a, h and 0, respectively.

Remark 1. Let V be a strong solution of (AHC). Then we can show
that U=V Io +’(0, 0) actually satisfies the heat convection equation for a.e.
t e [0, S].
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Outline of the proofs. Theorem 1 is proven by the method of [1], [4]
and [5]. We employ the penalty and the Galerkin’s approximation.

Theorem 2 is proven by an iteration. To show the convergence of the
iterated sequence, the following is important"

Lemma 1. Let U: [0, T]--H(B) L2(B) and t(U(.)) [0, T]-+[0, + c)
be absolutely continuous on [0, T]. Let .=_(t e (0, T) dU/dt, dt(U(t))/dt
exist and U(t) e D(t)). Then, there exist positive constants C1 and C2
such that

(9) -t(U(t))-(G, ff- U(t)),( I._<__ C,.,,G,,( .t(U(t))/+C.t(U(t))
holds for every t e

_
and G e (U(t)).

See also [6] and [9].
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