42. On the Initial Value Problem for the Heat Convection Equation of Boussinesq Approximation in a Time-dependent Domain

By Kazuo Ōeda
General Education, Japan Women's University
(Communicated by Kôsaku Yosida, m. J. A., May 12, 1988)

Introduction and results. Let K be a compact set in R^{m} ($m=2$ or 3) with smooth boundary ∂K. Let $\Gamma(t)$ be a simple closed surface in R^{3} (or curve in R^{2}) such that K is contained in the interior of the region surrounded by $\Gamma(t)$. The time-dependent space domain $\Omega(t)$ is a bounded set in R^{m} whose boundary $\partial \Omega(t)$ consists of two components, i.e.

$$
\partial \Omega(t)=\partial K \cup \Gamma(t) .
$$

Such domains $\Omega(t)(0 \leqq t \leqq T)$ generate a non-cylindrical domain $\hat{\Omega}=\bigcup_{0 \leqq t \leqq T}$ $\cdot \Omega(t) \times\{t\}$, where we consider the following initial value problem for the heat convection equation of Boussinesq approximation :

$$
\left\{\begin{align*}
u_{t}+(u \cdot \nabla) u & =-\frac{\nabla p}{\rho}+\left\{1-\alpha\left(\theta-T_{0}\right)\right\} g+\nu \Delta u & & \text { in } \hat{\Omega}, \tag{1}\\
\operatorname{div} u & =0 & & \text { in } \hat{\Omega}, \\
\theta_{t}+(u \cdot \nabla) \theta & =\kappa \Delta \theta & & \text { in } \hat{\Omega}
\end{align*}\right.
$$

(3) $\left.\quad u\right|_{t=0}=a,\left.\quad \theta\right|_{t=0}=h \quad$ in $\Omega(0)$,
where $u=u(x, t)$ is the velocity field, $p=p(x, t)$ is the pressure and $\theta=\theta(x, t)$ is the temperature ; $\nu, \kappa, \alpha, \rho$ and $g=g(x)$ are the kinematic viscosity, the thermal conductivity, the coefficient of volume expansion, the density at $\theta=T_{0}$ and the gravitational vector, respectively. According to Boussinesq approximation, ρ is a fixed constant. The differential operators Δ and ∇ mean those for x variables only. Concerning the Navier-Stokes equation, Fujita-Sauer [1], Ôtani-Yamada [6], Inoue-Wakimoto [2] and H. Morimoto [5] studied the initial value problem or the time periodic problem in some time-dependent domains. As for the stationary problem for the heat convection equation, we refer to, for instance, P.H. Rabinowitz [7] and D.H. Sattinger [8]. We note, as a physical example, the convection of the earth's mantle which may occur in the interior of the earth.

We make some simplifying assumptions on $\beta(x, t)$ and $\Omega(t)$.
(A1) $\beta \equiv 0$. (This may not be physically realistic.)
(A2) There exists an open ball B_{1} such that $\overline{\Omega(t)} \subset B_{1}$.
(A3) $\quad \Gamma(t)$ and ∂K are smooth (say, of class $\left.C^{3}\right)$. Also $\Gamma(t) \times\{t\}(0<t<T)$ changes smoothly (say, of class C^{4}) with respect to t. (Namely, the domain $\hat{\Gamma}=\cup_{0<t<T} \Gamma(t) \times\{t\}$ has the same properties as those in [1] and [6].)
(A4) $g(x)$ is a bounded and continuous vector function in $R^{m} \backslash$ int K.

Our main results are as follows. (The definition of weak solutions, strong solutions and the function spaces are to be given in the next section.)

Theorem 1. Assume (A1)-(A4). If $a \in H_{\sigma}(\Omega(0))$ and $h \in L^{2}(\Omega(0))$, then there exists a weak solution of (1)-(3) for any time interval [0, T].

Theorem 2. Under the same assumptions of Theorem 1, if $a \in H_{o}^{1}(\Omega(0))$, $h \in W_{2}^{1}(\Omega(0)),\left.h\right|_{\partial K}=T_{0}$ and $\left.h\right|_{\Gamma(0)}=0$, then there is a positive number τ_{0} depending on a, h and T_{0} such that the initial value problem (1)-(3) has a unique strong solution on $\left[0, \tau_{0}\right]$.

The author wishes to express his hearty thanks to Professor H. Fujita and Professor T. Suzuki for their valuable advice.

Notations and formulation. For a bounded domain Ω in R^{m} with smooth boundary $\partial \Omega$, we write $\|u\|_{\Omega}$ or simply $\|u\|$ instead of $\|u\|_{L^{2}(\Omega)}$. The inner product in $L^{2}(\Omega)$ is denoted by $(u, v)_{L^{2}(\Omega)},(u, v)_{\Omega}$ or (u, v). The solenoidal function spaces are defined as usual :
$D_{\sigma}(\Omega)=\left\{\varphi \in C_{0}^{\infty}(\Omega) ; \operatorname{div} \varphi=0\right\}$,
$H_{\sigma}(\Omega)=$ the completion of $D_{o}(\Omega)$ under the $L^{2}(\Omega)$-norm,
$H_{\sigma}^{1}(\Omega)=$ the completion of $D_{o}(\Omega)$ under the $W_{2}^{1}(\Omega)$-norm.
For the time-dependent domain $\hat{\Omega}=\cup_{0 \leqq t \leq T} \Omega(t) \times\{t\}$, described in the preceding section, we put

$$
\hat{D}_{\sigma}(\hat{\Omega})=\left\{\varphi \in C_{0}^{\infty}(\hat{\Omega}) ; \operatorname{div} \varphi=0\right\}
$$

$\hat{H}_{\sigma}^{1}(\hat{\Omega})=$ the completion of $\hat{D}_{\sigma}(\hat{\Omega})$ under the norm $\nu_{\sigma}(\cdot)$, where $\nu_{\sigma}(u)=\|\nabla u\|_{\hat{\Omega}}$;

$$
\hat{D}(\hat{\Omega})=\left\{\psi \in C^{\infty}(\widehat{\Omega(t) \cup \partial K}) ; \operatorname{supp} \subset \widehat{\Omega(t) \cup \partial K} \text { and } \psi=0 \text { on } \partial K\right\}
$$

$\hat{H}^{1}(\hat{\Omega})=$ the completion of $\hat{D}(\hat{\Omega})$ under the norm $\nu(\cdot)$,
where $\nu(u)=\|\nabla u\|_{\hat{\Omega}}$ and $\widehat{\Omega(t) \cup \partial K}=\cup_{0 \leq t \leq T}(\Omega(t) \cup \partial K) \times\{t\}$.
Moreover,

$$
\begin{aligned}
\mathscr{D}_{o}(\hat{\Omega}) & =\left\{\varphi \in \hat{D}_{\sigma}(\hat{\Omega}) ; \varphi=0 \text { at } t=T\right\}, \\
\hat{\mathscr{D}}(\hat{\Omega}) & =\{\psi \in \hat{D}(\hat{\Omega}) ; \psi=0 \text { at } t=T\}, \\
\mathcal{U}(\hat{\Omega}) & =\left\{\varphi \in \hat{H}_{o}^{1}(\hat{\Omega}) ; \text { ess.sup. }\|\varphi(t)\|_{L^{2}(\Omega(t))}<+\infty\right\}, \\
\mathscr{I}(\hat{\Omega}) & =\left\{\psi \in \hat{H}^{1}(\hat{\Omega}) ; \underset{0 \leq t \leq T}{ },\|\psi(t)\|_{L^{2}(\Omega(t))}<+\infty\right\} .
\end{aligned}
$$

We introduce an auxiliary function $\bar{\theta}(x, t)$ solving

$$
\begin{cases}\theta_{t}=\Delta \theta & \text { in } \hat{\Omega}, \tag{4}\\ \left.\theta\right|_{\partial_{K}}=T_{0},\left.\theta\right|_{\Gamma(t)}=0 & \text { for any } t \in[0, T], \\ \left.\theta\right|_{t=0}=\eta(x) & \text { in } \Omega(0),\end{cases}
$$

where $\eta(x)$ satisfies $\Delta \eta=0$ in $\Omega(0)$ with $\left.\eta\right|_{\partial K}=T_{0}$ and $\left.\eta\right|_{\Gamma(0)}=0$.
Under these preparations we can define the weak solution of (1)-(3).
Definition 1. $U={ }^{t}(u, \theta)$ defined in $\hat{\Omega}$ is a weak solution of (1)-(3) if the following (i) and (ii) are satisfied :
(i) ${ }^{t}(u, \theta-\bar{\theta}) \in \mathcal{U}(\hat{\Omega}) \times \mathcal{I}(\hat{\Omega})$.
(ii) For all $\Phi={ }^{t}(\varphi, \psi) \in \hat{\mathscr{D}}_{\sigma}(\hat{\Omega}) \times \hat{\mathscr{D}}(\hat{\Omega})$ the equality

$$
\begin{align*}
& \int_{0}^{T}\left\{\left(U, \Phi_{t}\right)+\left(U,(u \cdot \nabla) \Phi+\nu(u, \Delta \varphi)+\kappa(\theta, \Delta \psi)+\left(\left(1-\alpha\left(\theta-T_{0}\right)\right) g, \varphi\right)\right\} d t\right. \tag{5}\\
& \quad=\int_{0}^{T} \int_{\partial K} T_{0} \frac{\partial \psi}{\partial n} d s d t-(A, \Phi(0))
\end{align*}
$$

holds, where $A={ }^{t}(a, h)$.
We will now define the strong solution of (1)-(3). First of all, we consider the following proper lower semi-continuous functions and subdifferential operators:

$$
\varphi_{B}(U)= \begin{cases}\frac{1}{2} \int_{B}\left(\nu|\nabla u|^{2}+\kappa|\nabla \theta|^{2}\right) d x & \text { if } U \in H_{\sigma}^{1}(B) \times \stackrel{\circ}{W}_{2}^{1}(B), \tag{6}\\ +\infty & \text { if } U \in\left(H_{\sigma}(B) \times L^{2}(B)\right) \backslash\left(H_{\sigma}^{1}(B) \times \stackrel{\circ}{W}_{2}^{1}(B)\right),\end{cases}
$$

$$
\begin{equation*}
\partial \varphi_{B}(U)={ }^{t}\left(A_{\sigma}(B) u,-\kappa \Delta \theta\right)=A(B) U, \tag{7}
\end{equation*}
$$

where $B=B_{1} \backslash K, A_{\sigma}(B)=-\nu P_{\sigma}(B) \Delta$ and $P_{\sigma}(B)$ is the orthogonal projection from $L^{2}(B)$ onto $H_{\sigma}(B)$. It is known that $D(A(B))$, the domain of the operator $A(B)$, is equal to $\left(W_{2}^{2}(B) \cap H_{o}^{1}(B)\right) \times\left(W_{2}^{2}(B) \cap \dot{W}_{2}^{1}(B)\right)$. We next define a closed convex set $K(t)$ of $H_{\sigma}(B) \times L^{2}(B)$ by

$$
K(t)=\left\{U \in H_{\sigma}(B) \times L^{2}(B) ; U=0 \text { a.e. in } B \backslash \Omega(t)\right\}
$$

for each $t \in[0, T]$ and write its indicator function by $I_{K(t)}$, that is, $I_{K(t)}(U)$ $=0$ if $U \in K(t)$ and $I_{K(t)}(U)=+\infty$ if $U \in\left(H_{\sigma}(B) \times L^{2}(B)\right) \backslash K(t)$. Here we define another p.l.s.c. function
(8) $\quad \varphi^{t}(U)=\varphi_{B}(U)+I_{K(t)}(U) \quad$ for each $t \in[0, T]$.

We consider the subdifferential operator $\partial \varphi^{t}$. It holds that $D\left(\partial \varphi^{t}\right)=\left\{U \in H_{\sigma}(B)\right.$ $\left.\times L^{2}(B) ;\left.U\right|_{\Omega(t)} \in\left(W_{2}^{2}(\Omega(t)) \cap H_{o}^{1}(\Omega(t))\right) \times\left(W_{2}^{2}(\Omega(t)) \cap \dot{W}_{2}^{1}(\Omega(t))\right),\left.U\right|_{B \backslash \Omega(t)}=0\right\}$ and $\partial \varphi^{t}(U)=\left\{f \in H_{\sigma}(B) \times L^{2}(B) ;\left.P(\Omega(t)) f\right|_{\Omega(t)}=\left.A(\Omega(t)) U\right|_{\Omega(t)}\right\}$ where $P(\Omega(t))={ }^{t}\left(P_{\sigma}\right.$ $\left.\cdot(\Omega(t)), 1_{\Omega(t)}\right)$. (See [6] and [9].) Then we can reduce the initial value problem (1)-(3) to the one for the following abstract heat convection equation (AHC) in $H_{\sigma}(B) \times L^{2}(B)$:
(AHC) $\frac{d V}{d t}+\partial \varphi^{t}(V(t))+F(t) V(t)+M(t) V(t) \ni P(B) f(t), \quad t \in[0, T]$,
where $V={ }^{t}(v, \theta), \quad F(t) V(t)={ }^{t}\left(P_{\sigma}(B)(v \cdot \nabla) v, \quad(v \cdot \nabla) \theta\right), \quad M(t) V(t)={ }^{t}\left(P_{\sigma}(B) \alpha \theta g\right.$, $(v \cdot \nabla) \bar{\theta}), f={ }^{t}\left(f_{1}, f_{2}\right)={ }^{t}\left(\left(1-\alpha\left(\bar{\theta}-T_{0}\right)\right) g, 0\right)$ and $P(B)={ }^{t}\left(P_{\sigma}(B), 1_{B}\right)$. (See [6] and [9].)

We define the strong solution of (AHC) as follows.
Definition 2. Let $V:[0, S] \rightarrow H_{\sigma}(B) \times L^{2}(B), S \in(0, T]$. Then V is called a strong solution of the initial value problem for (AHC) on $[0, S]$ if it satisfies the following properties (i), (ii) and (iii).
(i) $\quad V \in C\left([0, S] ; H_{\sigma}(B) \times L^{2}(B)\right)$ and $d V / d t \in L^{2}\left(0, S ; H_{\sigma}(B) \times L^{2}(B)\right)$.
(ii) $V(t) \in D\left(\partial \varphi^{t}\right)$ for a.e. $t \in[0, S]$ and there is a function $G={ }^{t}\left(g_{1}, g_{2}\right)$ $\in L^{2}\left(0, S ; H_{o}(B) \times L^{2}(B)\right)$ such that $G(t) \in \partial \varphi^{t}(V(t))$ and

$$
\frac{d V}{d t}+G(t)+F(t) V(t)+M(t) V(t)=P(B) f(t)
$$

hold for a.e. $t \in[0, S]$.
(iii) $V(0)={ }^{t}(\tilde{a}, \tilde{h}-\tilde{\theta}(0))$ holds in $H_{\sigma}(B) \times L^{2}(B)$ where \tilde{a}, \tilde{h} and $\tilde{\tilde{\theta}}$ mean the natural extension of a, h and $\bar{\theta}$, respectively.

Remark 1. Let V be a strong solution of (AHC). Then we can show that $U=\left.V\right|_{\hat{2}}+^{t}(0, \bar{\theta})$ actually satisfies the heat convection equation for a.e. $t \in[0, S]$.

Outline of the proofs. Theorem 1 is proven by the method of [1], [4] and [5]. We employ the penalty and the Galerkin's approximation.

Theorem 2 is proven by an iteration. To show the convergence of the iterated sequence, the following is important:

Lemma 1. Let $U:[0, T] \rightarrow H_{\sigma}(B) \times L^{2}(B)$ and $\varphi^{t}(U(\cdot)):[0, T] \rightarrow[0,+\infty)$ be absolutely continuous on $[0, T]$. Let $\mathcal{L} \equiv\left\{t \in(0, T) ; d U / d t, d \varphi^{t}(U(t)) / d t\right.$ exist and $\left.U(t) \in D\left(\partial \varphi^{t}\right)\right\}$. Then, there exist positive constants C_{1} and C_{2} such that
(9) $\quad\left|\frac{d}{d t} \varphi^{t}(U(t))-\left(G, \frac{d}{d t} U(t)\right)_{L^{2}(B)}\right| \leqq C_{1} \cdot\|G\|_{L^{2}(B)} \cdot \varphi^{t}(U(t))^{1 / 2}+C_{2} \cdot \varphi^{t}(U(t))$
holds for every $t \in \mathcal{L}$ and $G \in \partial \varphi^{t}(U(t))$.
See also [6] and [9].

References

[1] Fujita, H. and N. Sauer: On existence of weak solutions of the Navier-Stokes equations in regions with moving boundaries. J. Fac. Sci. Univ. Tokyo, Sect. IA, 17, 403-420 (1970).
[2] Inoue, A. and M. Wakimoto: On existence of solutions of the Navier-Stokes equation in a time dependent domain. ibid., 24, 303-319 (1977).
[3] Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York-London (1963).
[4] Lions, J. L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Dunod, Paris (1969).
[5] Morimoto, H.: On existence of periodic weak solutions of the Navier-Stokes equations in regions with periodically moving boundaries. J. Fac. Sci. Univ. Tokyo, Sect. IA, 18, 499-524 (1971-72).
[6] Ôtani, M. and Y. Yamada: On the Navier-Stokes equations in noncylindrical domains. An approach by the subdifferential operator theory. ibid., 25, 185-204 (1978).
[7] Rabinowitz, P. H.: Existence and nonuniqueness of rectangular solutions of the Bénard problem. Arch. Rat. Mech. Anal., 29, 32-57 (1968).
[8] Sattinger, D. H.: Group Theoretic Methods in Bifurcation Theory. Lecture Notes in Math., vol. 762, Springer (1978).
[9] Yamada, Y.: On evolution equations generated by subdifferential operators. J. Fac. Sci. Univ. Tokyo, Sect. IA, 23, 495-515 (1976).

