60. Exponentials of Certain Completions of the Unitary Form of a Kac-Moody Algebra

By Kiyokazu Suto

Department of Mathematics, Ehime University

(Communicated by Shokichi IYANAGA, M. J. A., June 14, 1988)

Let \mathfrak{g}_R be a real Kac-Moody algebra corresponding to a symmetrizable generalized Cartan matrix (=GCM) A, and \mathfrak{h}_R be the Cartan subalgebra of \mathfrak{g}_R . Then, $\mathfrak{g}=C\otimes_R\mathfrak{g}_R$ is the complex Kac-Moody algebra with the same GCM A, and $\mathfrak{h}=C\otimes_R\mathfrak{h}_R$ is the Cartan subalgebra of \mathfrak{g} . Let \mathfrak{k} be the unitary form of \mathfrak{g} given in [2]. In [3], we considered two kinds of representations (π, V) of \mathfrak{g} , the adjoint representation (ad, \mathfrak{g}) and irreducible representations $(\pi_A, L(A))$ with dominant integral highest weights $A \in \mathfrak{h}_R^*$, and defined the spaces $H_m(\pi)$ of vectors of class C^m , $m=0, 1, 2, \dots, \infty, \omega$. Then we showed that the action of the "analytic completion" \mathfrak{k}_ω of \mathfrak{k} can be exponentiated and that the exponentials $\exp \pi(x), x \in \mathfrak{k}_\omega$, leave each space of C^m -vectors invariant.

In this paper, we extend this result so that the action of f_2 on the space of C^1 -vectors is exponentiated and that for each $m=0, 1, 2, \cdots$, the space of C^m -vectors is invariant under the exponentials of elements in f_{m+2} . (f_2 and f_{m+2} will be defined in § 1)

§1. Spaces of C^m -vectors. The notations are the same as in [2]. Since the standard contravariant Hermitian form $(\cdot | \cdot)_0$ on g is not positive definite on \mathfrak{h} in general, we take another Hermitian form $(\cdot | \cdot)_1$ positive definite on the whole space g as follows. Take a basis $\{h_i\}_i$ of \mathfrak{h}_R such that $(h_i | h_j)_0 = \delta_{ij}$ or $-\delta_{ij}$ for any i, j. Let $(\cdot | \cdot)_1$ be the inner product on \mathfrak{h} with respect to which $\{h_i\}_i$ is an orthonormal basis, and extend it to g by

$$(x | y)_1 = (x_0 | y_0)_1 + \sum (x_a | y_a)_0$$

for
$$x = x_0 + \sum x_{\alpha}$$
, $y = y_0 + \sum y_{\alpha} \in \mathfrak{g} = \mathfrak{h} + \sum \mathfrak{g}^{\alpha}$,

where all summations run over the root system \varDelta .

Let T be the bijective linear operator on g such that $(x|y)_0 = (x|Ty)_1$ for any $x, y \in g$. Then, as is easily verified, T is unitary and self-adjoint with respect to $(\cdot | \cdot)_1$, and so involutive.

Let $P(\pi)$ be the set of weights of (π, V) and put $\underline{V} = \prod_{\mu \in P(\pi)} V_{\mu}$, the direct product of V_{μ} 's, where V_{μ} is the weight space of weight μ . Then, g acts on \underline{V} by

$$\pi(x)v = \left(\sum_{\alpha+\nu=\mu}\pi(x_{\alpha})v_{\nu}\right)_{\mu}$$

for $x = x_0 + \sum x_{\alpha} \in \mathfrak{g} = \mathfrak{h} + \sum \mathfrak{g}^{\alpha}$, $v = (v_{\mu})_{\mu} \in \underline{V}$.

Let $(\cdot | \cdot)_{\pi}$ be the standard inner product on $V: (\cdot | \cdot)_{\pi} = (\cdot | \cdot)_{1}$ for $\pi = ad$ and $(\cdot | \cdot)_{\pi} = (\cdot | \cdot)_{4}$ in [2] for $\pi = \pi_{4}$. Further let $H(\pi)$ be the completion of the pre-Hilbert space $(V, (\cdot | \cdot)_{\pi})$. Then $H(\pi)$ is regarded as a subspace of \underline{V} by

$$H(\pi) = \{ (v_{\mu})_{\mu} \in \underline{V} \mid \sum_{\mu} (v_{\mu} \mid v_{\mu})_{\pi} < +\infty \}.$$

In [3], we defined subspaces $H_m(\pi)$, the spaces of C^m -vectors, of $H(\pi)$ by $H_0(\pi) = H(\pi)$, and

 $H_m(\pi) = \{ v \in H_{m-1}(\pi) \mid \pi(x)v \in H_{m-1}(\pi) \text{ for any } x \in \mathfrak{g} \}.$

Then, each $H_m(\pi)$ is characterized by one arbitrarily fixed strictly dominant element in \mathfrak{h}_R as follows.

Proposition 1 [3, Theorem 3.2]. Let $h_0 \in \mathfrak{h}_R$ be a strictly dominant element, viz, an element such that $\alpha(h_0) > 0$ for any positive root α . Then, it holds that for any $m = 0, 1, 2, \cdots$,

$$H_m(\pi) = \{ v \in \underline{V} \mid \pi(h_0)^m v \in H(\pi) \}.$$

Thanks to this characterization, we can define for each $m = 1, 2, 3, \cdots$, an inner product $(\cdot | \cdot)_{\pi,m}$ on $H_m(\pi)$ which provides $H_m(\pi)$ with a Hilbert space structure, and a continuous imbedding $H_m(\pi) \longrightarrow H_{m-1}(\pi)$. The action of g on V is extended, by continuity, to a bilinear map $H_m(\text{ad}) \times H_m(\pi) \ni$ $(x, v) \mapsto \pi(x)v \in H_{m-1}(\pi)$. We write $[x, y], x, y \in H_m(\pi)$, for (ad x)y.

Let $g_m = H_m(ad)$ and f_m be the closure of the unitary form f in g_m .

§ 2. Negative spaces. To show the exponentiability of the actions of the completions of \mathfrak{k} , we need to introduce *negative spaces* $H_{-m}(\pi)$ as the duals of the spaces $H_m(\pi)$ of C^m -vectors.

Let $m = 0, 1, 2, \dots$, and $v \in H(\pi)$. Since the inclusion $H_m(\pi) \longrightarrow H(\pi)$ is continuous, a continuous linear form F_v on $H_m(\pi)$ is defined by $F_v(u) = (u | v)_{\pi}$ for $u \in H_m(\pi)$. Let $||v||_{\pi, -m}$ be the norm of the linear form F_v , and $H_{-m}(\pi)$ the completion of $H(\pi)$ with respect to this norm.

We may regard canonically all the spaces $H_{-m}(\pi)$ as subspaces of <u>V</u> and we have a chain of Hilbert spaces spreading into two sides:

 $\underline{V} \supset \cdots \supset H_{-m-1}(\pi) \supset H_{-m}(\pi) \supset \cdots \supset H_{-1}(\pi) \supset H_0(\pi) \supset H_1(\pi) \supset \cdots \supset H_m(\pi) \supset H_{m+1}(\pi) \supset \cdots \supset V.$

By definition of $H_{-m}(\pi)$, $(\cdot | \cdot)_{\pi}$ gives a non-degenerate sesquilinear pairing on $H_m(\pi) \times H_{-m}(\pi)$. Through this pairing, the action of g_{m+1} on $H_{m+1}(\pi)$ is translated on $H_{-m}(\pi)$ as $(u | \pi(x)v)_{\pi} = ((T_{\pi} \circ \pi(x^*) \circ T_{\pi})u | v)_{\pi}$, for $x \in$ g_{m+1} , $u \in H_{m+1}(\pi)$ and $v \in H_{-m}(\pi)$, where $T_{\pi} = T$ for $\pi =$ ad and $T_{\pi} =$ identity for $\pi = \pi_4$.

§ 3. Exponentials of $x \in t_m$. Here, we recall the following criterion in [4, Chapter IX] for the exponentiability of a closed operator on a Banach space.

Proposition 2 [4]. Let $(X, \|\cdot\|)$ be a Banach space and B a closed operator on X with the dense domain $D \subset X$. Assume that B satisfies the following conditions: for sufficiently small $\varepsilon \in \mathbf{R}$, i) $1-\varepsilon B$ is surjective, and ii) there exists a positive constant c independent of ε such that for any $v \in D$, $\|(1-\varepsilon B)v\| \ge (1-c|\varepsilon|) \|v\|.$

Then, there exists a unique strongly continuous 1-parameter group S_t , $t \in \mathbf{R}$, of bounded operators on X whose infinitesimal generator is equal to B. The operator norm is evaluated as $||S_t|| \leq e^{c|t|}$.

Now, we show that this criterion can be applied to the closure of $\pi(x)$,

No. 6]

 $x \in \mathfrak{k}_{m+2}$, considered as an operator on $H_m(\pi)$ with the dense domain $H_{m+1}(\pi)$.

Put $|v|_{\pi,m} = \sum_{j=0}^{m} ||\pi(h_0)^j v||_{\pi}$ for $v \in H_m(\pi)$. Then, the norm $|\cdot|_{\pi,m}$ is equivalent to the original one on $H_m(\pi)$, and $(H_m(\pi), |\cdot|_{\pi,m})$ is a Banach space. For this new norm, we have an important evaluation for the actions of elements in \mathfrak{k}_{m+1} on $H_{m+1}(\pi)$ which fits the condition ii) in Proposition 2.

Proposition 3. Let $x \in \mathfrak{t}_{m+1}$. Then, there exists a positive constant C dependent only on m and π such that for any $v \in H_{m+1}(\pi)$,

 $|(1-\pi(x))v|_{\pi,m} \geq (1-C|x|_{\mathrm{ad},m+1})|v|_{\pi,m}.$

To examine the condition i) in Proposition 2, we need the following estimate for f_{m+2} -action on the negative space $H_{-m}(\pi)$.

Proposition 4. Let $x \in f_{m+2}$. Then, there exist positive constants c and c' both dependent only on m and π such that for any $v \in H_{-m}(\pi)$,

 $\|(1+\pi(x))v\|_{\pi,-m-1} \ge c(1-c'\|x\|_{\mathrm{ad},m+2}) \|v\|_{\pi,-m-1}.$

Now let $x \in f_{m+2}$. By definition of the action of x on $H_{-m}(\pi)$, for any $\varepsilon \in \mathbf{R}$, $(1-\varepsilon\pi(x))H_{m+1}(\pi)$ is dense in $H_m(\pi)$ if and only if $1+\varepsilon\pi(x): H_{-m}(\pi) \to H_{-m-1}(\pi)$ is injective. Hence, by Proposition 4, if ε is sufficiently small, then $(1-\varepsilon\pi(x))H_{m+1}(\pi)$ is dense in $H_m(\pi)$. Let B be the closure of the operator $\pi(x)$ on $H_m(\pi)$ with the domain $H_{m+1}(\pi)$. By Proposition 3, the range of $1-\varepsilon B$ is equal to the closure of that of $1-\varepsilon\pi(x)$. And so $1-\varepsilon B$ is surjective, that is, B satisfies the condition i) in Proposition 2.

On the other hand, we see again from Proposition 3 that B satisfies also the condition ii), and we have

Theorem 5. Let $m=0, 1, 2, ..., and x \in \mathfrak{t}_{m+2}$. Then, there exists a unique strongly continuous 1-parameter group $e^{t\pi(x)} = \exp t\pi(x), t \in \mathbb{R}$, of bounded operators on $H_m(\pi)$ whose infinitesimal generator is equal to the closure of the operator $\pi(x)$ on $H_m(\pi)$ with domain $H_{m+1}(\pi)$. Moreover, the operator norm $|e^{\pi(x)}|_{op,\pi,m}$ with respect to $|\cdot|_{\pi,m}$ is evaluated as

 $|e^{\pi(x)}|_{\mathrm{op},\pi,m} \leq \exp(C|x|_{\mathrm{ad},m+1}),$

where C is the same constant as in Proposition 3.

Naturally, if $x \in f_{m+2}$, the exponential $e^{\pi(x)}$ defined on $H(\pi) = H_0(\pi)$ coincides, by restriction, with $e^{\pi(x)}$ defined on $H_m(\pi)$.

§ 4. Properties of the exponential map. Here, we list up some properties of the map exp. First, we have the following continuity of exp.

Theorem 6. Let $m = 0, 1, 2, \dots, x \in \mathfrak{k}_{m+2}$, $y \in \mathfrak{k}_{m+3}$, and $v \in H_{m+1}(\pi)$. Then, there holds for the constant C in Proposition 3

 $|e^{\pi(x)}e^{\pi(y)}v - v|_{\pi,m} \leq C e^{C(|x|_{\mathrm{ad}},m+1+2|y|_{\mathrm{ad}},m+2)} |x + y|_{\mathrm{ad},m+1} |v|_{\pi,m+1}.$

In particular, the exponential map $\mathfrak{t}_{m+3} \ni z \mapsto e^{\pi(z)} \in \mathbf{B}(H_m(\pi))$, the space of all the bounded operators on $H_m(\pi)$, is strongly continuous with respect to the norm $\|\cdot\|_{\mathrm{ad},m+1}$ uniformly on any subset of \mathfrak{t}_{m+3} which is bounded with respect to $\|\cdot\|_{\mathrm{ad},m+2}$.

Remark. It is shown in Theorem 5 that the exponentials $\exp \pi(x)$, $x \in f_{m+3}$, are contained in $B(H_{m+1}(\pi))$. But, to imply the continuity of exp, we have to consider a weaker topology, the relative one from the strong operator topology on $B(H_m(\pi))$, as is stated in Theorem 6.

210

By this continuity, the commutation relations of exponentials proved in [3] for the exponentials of the analytic completion f_{ω} of f is generalized as follows.

Theorem 7. Let $x \in \mathfrak{f}_4$, $y \in \mathfrak{g}_1$, and $z \in \mathfrak{f}_2$. Then, we have i) $e^{\pi(x)}\pi(y)e^{-\pi(x)} = \pi(e^{\operatorname{ad} x}y)$ on $H_1(\pi)$, ii) $e^{\pi(x)}e^{\pi(z)}e^{-\pi(x)} = \exp \pi(e^{\operatorname{ad} x}z)$ on $H(\pi)$.

§ 5. Groups associated with \mathfrak{k}_m . Finally let K_m^{π} be the group of operators generated by $\exp \pi(\mathfrak{k}_m)$. Thanks to Theorem 7, we have the adjoint action of K_m^{π} through K_m^{ad} as follows. For simplicity, we assume here that for any connected component S of the Dynkin diagram of the GCM A, there exists $i \in S$ such that $(A \mid \alpha_i)$ is not zero for the *i*th simple root α_i . Then,

Theorem 8. Let $m=4, 5, 6, \dots$, and $\pi=\pi_A$. Under the above assumption for Λ , there exists a unique group homomorphism $\operatorname{Ad}=\operatorname{Ad}_{\pi}$ of K_m^{π} onto K_m^{ad} such that

$$\operatorname{Ad}\left(e^{\pi(x)}\right) = e^{\operatorname{ad} x} \quad for \ each \ x \in \mathfrak{k}_{m}.$$

The author expresses his hearty thanks to Prof. T. Hirai for many discussions and constant encouragement.

References

- V. G. Kac and D. H. Peterson: Unitary structure in representations of infinite dimensional groups and a convexity theorem. Invent. Math., 76, 1-14 (1984).
- [2] K. Suto: Groups associated with compact type subalgebras of Kac-Moody algebras. Proc. Japan Acad., 62A, 392-395 (1986).
- [3] ——: Differentiable vectors and analytic vectors in completions of certain representation spaces of a Kac-Moody algebra. ibid., 63A, 225-228 (1987).
- [4] K. Yosida: Functional Analysis. Springer-Verlag, Berlin (1980).

No. 6]