60. Exponentials of Certain Completions of the Unitary Form of a Kac-Moody Algebra

By Kiyokazu Suto
Department of Mathematics, Ehime University
(Communicated by Shokichi Iyanaga, m. J. A., June 14, 1988)

Let g_{R} be a real Kac-Moody algebra corresponding to a symmetrizable generalized Cartan matrix ($=\mathrm{GCM}$) A, and $\mathfrak{G}_{\boldsymbol{R}}$ be the Cartan subalgebra of \mathfrak{g}_{R}. Then, $\mathrm{g}=\boldsymbol{C} \otimes_{R} \mathrm{~g}_{\boldsymbol{R}}$ is the complex Kac-Moody algebra with the same GCM A, and $\mathfrak{G}=C \otimes_{R} \mathfrak{h}_{R}$ is the Cartan subalgebra of \mathfrak{g}. Let be the unitary form of g given in [2]. In [3], we considered two kinds of representations (π, V) of g, the adjoint representation (ad, g) and irreducible representations ($\left.\pi_{\Lambda}, L(\Lambda)\right)$ with dominant integral highest weights $\Lambda \in \mathfrak{b}_{R}^{*}$, and defined the spaces $H_{m}(\pi)$ of vectors of class $C^{m}, m=0,1,2, \cdots, \infty, \omega$. Then we showed that the action of the "analytic completion" \mathfrak{f}_{ω} of \mathfrak{f} can be exponentiated and that the exponentials $\exp \pi(x), x \in f_{\omega}$, leave each space of C^{m}-vectors invariant.

In this paper, we extend this result so that the action of \mathfrak{f}_{2} on the space of C^{1}-vectors is exponentiated and that for each $m=0,1,2, \cdots$, the space of C^{m}-vectors is invariant under the exponentials of elements in \mathfrak{f}_{m+2}. $\quad\left(\mathfrak{f}_{2}\right.$ and \mathfrak{f}_{m+2} will be defined in § 1)
§1. Spaces of C^{m}-vectors. The notations are the same as in [2]. Since the standard contravariant Hermitian form $(\cdot \mid \cdot)_{0}$ on g is not positive definite on \mathfrak{h} in general, we take another Hermitian form $(\cdot \mid \cdot)_{1}$ positive definite on the whole space \mathfrak{g} as follows. Take a basis $\left\{h_{i}\right\}_{i}$ of \mathfrak{G}_{R} such that $\left(h_{i} \mid h_{j}\right)_{0}=\delta_{i j}$ or $-\delta_{i j}$ for any i, j. Let $(\cdot \mid \cdot)_{1}$ be the inner product on \mathfrak{G} with respect to which $\left\{h_{i}\right\}_{i}$ is an orthonormal basis, and extend it to \mathfrak{g} by

$$
\begin{aligned}
(x \mid y)_{1}= & \left(x_{0} \mid y_{0}\right)_{1}+\sum\left(x_{a} \mid y_{\alpha}\right)_{0} \\
& \quad \text { for } x=x_{0}+\sum x_{\alpha}, y=y_{0}+\sum y_{\alpha} \in \mathfrak{g}=\mathfrak{h}+\sum \mathfrak{g}^{\alpha},
\end{aligned}
$$

where all summations run over the root system Δ.
Let T be the bijective linear operator on g such that $(x \mid y)_{0}=(x \mid T y)_{1}$ for any $x, y \in \mathfrak{g}$. Then, as is easily verified, T is unitary and self-adjoint with respect to $(\cdot \mid \cdot)_{1}$, and so involutive.

Let $P(\pi)$ be the set of weights of (π, V) and put $V=\prod_{\mu \in P(\pi)} V_{\mu}$, the direct product of V_{μ} 's, where V_{μ} is the weight space of weight μ. Then, g acts on \underline{V} by

$$
\pi(x) v=\left(\sum_{\alpha+\nu=\mu} \pi\left(x_{\alpha}\right) v_{\nu}\right)_{\mu}
$$

for $x=x_{0}+\sum x_{\alpha} \in \mathfrak{g}=\mathfrak{h}+\sum \mathfrak{g}^{\alpha}, v=\left(v_{\mu}\right)_{\mu} \in \underline{V}$.
Let $(\cdot \mid \cdot)_{\pi}$ be the standard inner product on $V:(\cdot \mid \cdot)_{\pi}=(\cdot \mid \cdot)_{1}$ for $\pi=\mathrm{ad}$ and $(\cdot \mid \cdot)_{\pi}=(\cdot \mid \cdot)_{\Lambda}$ in [2] for $\pi=\pi_{\Lambda}$. Further let $H(\pi)$ be the completion of the pre-Hilbert space $\left(V,(\cdot \mid \cdot)_{\pi}\right)$. Then $H(\pi)$ is regarded as a subspace of V by

$$
H(\pi)=\left\{\left(v_{\mu}\right)_{\mu} \in \underline{V} \mid \sum_{\mu}\left(v_{\mu} \mid v_{\mu}\right)_{\pi}<+\infty\right\} .
$$

In [3], we defined subspaces $H_{m}(\pi)$, the spaces of C^{m}-vectors, of $H(\pi)$ by $H_{0}(\pi)=H(\pi)$, and

$$
H_{m}(\pi)=\left\{v \in H_{m-1}(\pi) \mid \pi(x) v \in H_{m-1}(\pi) \text { for any } x \in \mathfrak{g}\right\} .
$$

Then, each $H_{m}(\pi)$ is characterized by one arbitrarily fixed strictly dominant element in \mathfrak{G}_{R} as follows.

Proposition 1 [3, Theorem 3.2]. Let $h_{0} \in \mathfrak{h}_{R}$ be a strictly dominant element, viz, an element such that $\alpha\left(h_{0}\right)>0$ for any positive root α. Then, it holds that for any $m=0,1,2, \cdots$,

$$
H_{m}(\pi)=\left\{v \in \underline{V} \mid \pi\left(h_{0}\right)^{m} v \in H(\pi)\right\} .
$$

Thanks to this characterization, we can define for each $m=1,2,3, \cdots$, an inner product $(\cdot \mid \cdot)_{\pi, m}$ on $H_{m}(\pi)$ which provides $H_{m}(\pi)$ with a Hilbert space structure, and a continuous imbedding $H_{m}(\pi) \hookrightarrow H_{m-1}(\pi)$. The action of \mathfrak{g} on V is extended, by continuity, to a bilinear map $H_{m}(\mathrm{ad}) \times H_{m}(\pi) \ni$ $(x, v) \mapsto \pi(x) v \in H_{m-1}(\pi)$. We write $[x, y], x, y \in H_{m}(\pi)$, for $(\operatorname{ad} x) y$.

Let $\mathfrak{g}_{m}=H_{m}($ ad $)$ and \mathfrak{f}_{m} be the closure of the unitary form \mathfrak{f} in \mathfrak{g}_{m}.
§ 2. Negative spaces. To show the exponentiability of the actions of the completions of \mathfrak{f}, we need to introduce negative spaces $H_{-m}(\pi)$ as the duals of the spaces $H_{m}(\pi)$ of C^{m}-vectors.

Let $m=0,1,2, \cdots$, and $v \in H(\pi)$. Since the inclusion $H_{m}(\pi) \longleftrightarrow H(\pi)$ is continuous, a continuous linear form F_{v} on $H_{m}(\pi)$ is defined by $F_{v}(u)=(u \mid v)_{\pi}$ for $u \in H_{m}(\pi)$. Let $\|v\|_{\pi,-m}$ be the norm of the linear form F_{v}, and $H_{-m}(\pi)$ the completion of $H(\pi)$ with respect to this norm.

We may regard canonically all the spaces $H_{-m}(\pi)$ as subspaces of \underline{V} and we have a chain of Hilbert spaces spreading into two sides:

$$
\begin{aligned}
\underline{V} \supset & \cdots \supset H_{-m-1}(\pi) \supset H_{-m}(\pi) \supset \cdots \supset H_{-1}(\pi) \supset H_{0}(\pi) \supset H_{1}(\pi) \supset \\
& \supset \cdots \supset H_{m}(\pi) \supset H_{m+1}(\pi) \supset \cdots \supset V .
\end{aligned}
$$

By definition of $H_{-m}(\pi),(\cdot \mid \cdot)_{\pi}$ gives a non-degenerate sesquilinear pairing on $H_{m}(\pi) \times H_{-m}(\pi)$. Through this pairing, the action of g_{m+1} on $H_{m+1}(\pi)$ is translated on $H_{-m}(\pi)$ as $(u \mid \pi(x) v)_{\pi}=\left(\left(T_{\pi} \circ \pi\left(x^{*}\right) \circ T_{\pi}\right) u \mid v\right)_{\pi}$, for $x \in$ $\mathfrak{g}_{m+1}, u \in H_{m+1}(\pi)$ and $v \in H_{-m}(\pi)$, where $T_{\pi}=T$ for $\pi=$ ad and $T_{\pi}=$ identity for $\pi=\pi_{\Lambda}$.
§3. Exponentials of $\boldsymbol{x} \in \mathfrak{f}_{m}$. Here, we recall the following criterion in [4, Chapter IX] for the exponentiability of a closed operator on a Banach space.

Proposition 2 [4]. Let $(X,\|\cdot\|)$ be a Banach space and B a closed operator on X with the dense domain $D \subset X$. Assume that B satisfies the following conditions: for sufficiently small $\varepsilon \in R$, i) $1-\varepsilon B$ is surjective, and ii) there exists a positive constant c independent of ε such that for any $v \in D$,

$$
\|(1-\varepsilon B) v\| \geqq(1-c|\varepsilon|)\|v\| .
$$

Then, there exists a unique strongly continuous 1-parameter group $S_{t}, t \in \boldsymbol{R}$, of bounded operators on X whose infinitesimal generator is equal to B. The operator norm is evaluated as $\left\|S_{t}\right\| \leqq e^{e|t|}$.

Now, we show that this criterion can be applied to the closure of $\pi(x)$,
$x \in \mathfrak{f}_{m+2}$, considered as an operator on $H_{m}(\pi)$ with the dense domain $H_{m+1}(\pi)$.
Put $|v|_{\pi, m}=\sum_{j=0}^{m}\left\|\pi\left(h_{0}\right)^{j} v\right\|_{\pi}$ for $v \in H_{m}(\pi)$. Then, the norm $|\cdot|_{\pi, m}$ is equivalent to the original one on $H_{m}(\pi)$, and $\left(H_{m}(\pi),|\cdot|_{\pi, m}\right)$ is a Banach space. For this new norm, we have an important evaluation for the actions of elements in \mathfrak{f}_{m+1} on $H_{m+1}(\pi)$ which fits the condition ii) in Proposition 2.

Proposition 3. Let $x \in \mathfrak{f}_{m+1}$. Then, there exists a positive constant C dependent only on m and π such that for any $v \in H_{m+1}(\pi)$,

$$
|(1-\pi(x)) v|_{\pi, m} \geqq\left(1-C|x|_{\mathrm{ad}, m+1}\right)|v|_{\pi, m}
$$

To examine the condition i) in Proposition 2, we need the following estimate for \mathfrak{f}_{m+2}-action on the negative space $H_{-m}(\pi)$.

Proposition 4. Let $x \in \mathfrak{f}_{m+2}$. Then, there exist positive constants c and c^{\prime} both dependent only on m and π such that for any $v \in H_{-m}(\pi)$,

$$
\|(1+\pi(x)) v\|_{\pi,-m-1} \geqq c\left(1-c^{\prime}\|x\|_{\mathrm{ad}, m+2}\right)\|v\|_{\pi,-m-1} .
$$

Now let $x \in \mathfrak{f}_{m+2}$. By definition of the action of x on $H_{-m}(\pi)$, for any $\varepsilon \in R,(1-\varepsilon \pi(x)) H_{m+1}(\pi)$ is dense in $H_{m}(\pi)$ if and only if $1+\varepsilon \pi(x): H_{-m}(\pi) \rightarrow$ $H_{-m-1}(\pi)$ is injective. Hence, by Proposition 4, if ε is sufficiently small, then $(1-\varepsilon \pi(x)) H_{m+1}(\pi)$ is dense in $H_{m}(\pi)$. Let B be the closure of the operator $\pi(x)$ on $H_{m}(\pi)$ with the domain $H_{m+1}(\pi)$. By Proposition 3, the range of $1-\varepsilon B$ is equal to the closure of that of $1-\varepsilon \pi(x)$. And so $1-\varepsilon B$ is surjective, that is, B satisfies the condition i) in Proposition 2.

On the other hand, we see again from Proposition 3 that B satisfies also the condition ii), and we have

Theorem 5. Let $m=0,1,2, \cdots$, and $x \in \mathfrak{f}_{m+2}$. Then, there exists a unique strongly continuous 1-parameter group $e^{t_{\pi(x)}}=\exp t \pi(x), t \in \boldsymbol{R}$, of bounded operators on $H_{m}(\pi)$ whose infinitesimal generator is equal to the closure of the operator $\pi(x)$ on $H_{m}(\pi)$ with domain $H_{m+1}(\pi)$. Moreover, the operator norm $\left|e^{\pi(x)}\right|_{\mathrm{op}, \pi, m}$ with respect to $|\cdot|_{\pi, m}$ is evaluated as

$$
\left|e^{\pi(x)}\right|_{\mathrm{op}, \pi, m} \leqq \exp \left(C|x|_{\left.\right|_{\mathrm{ad}}, m+1}\right)
$$

where C is the same constant as in Proposition 3.
Naturally, if $x \in \mathfrak{f}_{m+2}$, the exponential $e^{\pi(x)}$ defined on $H(\pi)=H_{0}(\pi)$ coincides, by restriction, with $e^{\pi(x)}$ defined on $H_{m}(\pi)$.
§4. Properties of the exponential map. Here, we list up some properties of the map exp. First, we have the following continuity of exp.

Theorem 6. Let $m=0,1,2, \cdots, x \in \mathfrak{f}_{m+2}, y \in \mathfrak{f}_{m+3}$, and $v \in H_{m+1}(\pi)$. Then, there holds for the constant C in Proposition 3

$$
\left|e^{\pi(x)} e^{\pi(y)} v-v\right|_{\pi, m} \leqq C e^{C\left(|x|_{\mathrm{ad}}, m+1+2|y| \mathrm{ad}, m+2\right)}|x+y|_{\text {ad }, m+1}|v|_{\pi, m+1} .
$$

In particular, the exponential map $\mathfrak{f}_{m+3} \ni \underset{z}{ } \rightarrow e^{\pi(z)} \in \boldsymbol{B}\left(H_{m}(\pi)\right)$, the space of all the bounded operators on $H_{m}(\pi)$, is strongly continuous with respect to the norm $\|\cdot\|_{a \mathrm{ad}, m+1}$ uniformly on any subset of \mathfrak{f}_{m+3} which is bounded with respect to $\|\cdot\|_{\mathrm{ad}, m+2}$.

Remark. It is shown in Theorem 5 that the exponentials $\exp \pi(x)$, $x \in \mathfrak{f}_{m+3}$, are contained in $\boldsymbol{B}\left(H_{m+1}(\pi)\right)$. But, to imply the continuity of \exp, we have to consider a weaker topology, the relative one from the strong operator topology on $\boldsymbol{B}\left(H_{m}(\pi)\right)$, as is stated in Theorem 6.

By this continuity, the commutation relations of exponentials proved in [3] for the exponentials of the analytic completion \mathfrak{f}_{ω} of \mathfrak{f} is generalized as follows.

Theorem 7. Let $x \in \mathfrak{f}_{4}, y \in \mathfrak{g}_{1}$, and $z \in \mathfrak{f}_{2}$. Then, we have

$$
\begin{array}{ll}
e^{\pi(x)} \pi(y) e^{-\pi(x)}=\pi\left(e^{\operatorname{ad} x} y\right) & \text { on } H_{1}(\pi), \\
e^{\pi(x)} e^{\pi(z)} e^{-\pi(x)}=\exp \pi\left(e^{\text {ad } x} z\right) & \text { on } H(\pi) .
\end{array}
$$

§5. Groups associated with \mathfrak{f}_{m}. Finally let K_{m}^{π} be the group of operators generated by $\exp \pi\left(\mathfrak{f}_{m}\right)$. Thanks to Theorem 7, we have the adjoint action of K_{m}^{π} through $K_{m}^{\text {ad }}$ as follows. For simplicity, we assume here that for any connected component S of the Dynkin diagram of the GCM A, there exists $i \in S$ such that $\left(\Lambda \mid \alpha_{i}\right)$ is not zero for the i th simple root α_{i}. Then,

Theorem 8. Let $m=4,5,6, \cdots$, and $\pi=\pi_{1}$. Under the above assumption for 1 , there exists a unique group homomorphism $\operatorname{Ad}=\operatorname{Ad}_{\pi}$ of K_{m}^{π} onto $K_{m}^{\text {ad }}$ such that

$$
\operatorname{Ad}\left(e^{\pi(x)}\right)=e^{\mathrm{ad} x} \quad \text { for each } x \in \mathfrak{f}_{m} .
$$

The author expresses his hearty thanks to Prof. T. Hirai for many discussions and constant encouragement.

References

[1] V. G. Kac and D. H. Peterson: Unitary structure in representations of infinite dimensional groups and a convexity theorem. Invent. Math., 76, 1-14 (1984).
[2] K. Suto: Groups associated with compact type subalgebras of Kac-Moody algebras. Proc. Japan Acad., 62A, 392-395 (1986).
[3] --: Differentiable vectors and analytic vectors in completions of certain representation spaces of a Kac-Moody algebra. ibid., 63A, 225-228 (1987).
[4] K. Yosida: Functional Analysis. Springer-Verlag, Berlin (1980).

