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Initial Boundary Value Problem for the Equations of
Ideal Magneto.Hydro.Dynamics with Perfectly

Conducting Wall Condition

By Taku YANAGISAWA*) and Akitaka MATSUMURA**)

(Communicated by KSsaku YOSIDA, M. ff.A., June 14, 1988)

1. In this paper we consider the initial boundary value problem or
the equations of ideal MHD that describe the motion of an ideal plasma
filling an open subset of R, surrounded by a rigid and perfectly conducting
wall. (See [1].) Our problem is to solve
( ) p(+(u.))p+p.u=O
( 1 )b p(t+(u.r))u+rp+pH (H)=O
( 1 ) H--V (u H)=O in [0, T] /2,
( 1 )d (t -- (U" 7))S--- 0(1)e V.H=O
( 2 ) (/9, u, H, S)I--0 (P0, u0, H0, So)-- U0 in/2,
(3) u.n=O, H.n=O on [0, T]F.
Here 9 is bounded or unbounded domain in R with a smooth and compact
boundary F, or a half space R+ the pressure p, the velocity u=(u, u, u),
the magnetic field H=(H, H, H), and the entropy S are the unknown
functions of t and x; the density p is determined by the equation of state
p---p(p, S); p>0 and p=p/p>O for p>0; the mgnetic permeability/is
assumed to be constant; we write 3=/3t, 3=/x, g=(3/3x, /x, 3/x)
and use the conventional notations in vector analysis; n=n(x)=(n, n2, n)
denotes the unit outward normal at x e F.

2. We set U=(p, u, H, S) and rewrite the system (1)_ in the sym-
metric form

4 ) Ao(U)tU-, A(U)3U=O.
i=l

In order to solve the problem by iteration, we consider the linearization of
(4) around an arbitrary unction U’= (p’, u’, H’, S’) near the initial data,
satisfying u’.n=0 and H’.n=0 on F. The linearized equation forms a
symmetric hyperbolic system with singular boundary matrix. In fact, the
boundary matrix has constant rank 2 on F. We define X(T, 9) to be the
space of unctions U(t, x) taking values in R and satisfying the ollowing
property" Let/_0 be an integer and let A, ..., / be an .rbitrary/-tuple
o smooth and bounded vector fields tangential to F, namely, let (/(x), n(x)}
=0 or x e F, i=l, ., . Then /...3U(t, x) e L(0, T L(9)) or
a+_m--2k, k-0, 1, ..., [m/2]. Here 3 denotes the partial differentia-
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tion in the direction normal to F.
Our main results are the following two theorems.
Theorem 1. Let be a bounded domain in R with smooth boundary

1". Let m 8 be an integer. Suppose that Uo e H([2) and that Uo satisfies
the following conditions
(5) V.Ho=O, polO in , Ho.n--O on F,
( 6 ) 3tu(O).n--O, k=O, 1, ., m--l, on 1".
Then there exists a constant ToO such that the problem (1)_o (2) (3) has a
unique solution U X(To, [2).

Theorem 2. Let be an unbounded domain in R with smooth and
compact boundary F or a half space R+. Let m8 be an integer. Suppose
that Uo-t(c, O)e H([2) for some constant cO and that Uo satisfies the
conditions given in Theorem 1. Then there exists a constant TO such
that the problem (1)_, (2) (3) has a unique solution U satisfying U-(c, O)
e X(T,, ).

Remark 1. Let U0 satisfy V.H0-0 in 9 and H0.n=0, 3u(0).n=0,
k=0, 1, ..., m--l, on 1". Then the solution, of (1)_ (2) satisfying u.n=O
on [0, T]F automatically satisfies V.H-0 in [0, T] 2, H.n=O on [0, T]
F and 3tH(0).n=0, k--0, 1,..., m-l, on F. This means that we may
regard V.H=0 and H.n--O as the restrictions on the initial data U0.

Remark 2. The characteristic boundary value problem was studied
in [2]-[7]. Our approach is close to that of [6] and [7]. But some further
considerations are needed or our problem.

3. Let t9 be a hal space R+={xlxO}. The general case can be
reduced to this case by localization and flattening of the boundary. We
introduce the new unknown function V--t(q--c, %, H, S) in place of U
__t(p, u, H, S), where q--p+(1/2)lHI is the magnetic pressure, and rewrite
the equations (1)_ in the form

a 0 --oH 0

( 7 ) 0 pI 0 O_ 3V
--o*H 0 I+oH(R)H
0 0 0

o(u. V) V --aH(u.V)
V (u. V)I. (H V)I.+ atH(u V) (H. V)I (I+aH(R)H)(u. V)
0 0 0

Ao(V)OtV-- A(V)OV=O.
i=l

0

(u.)

V

Here we set o=pq/p and H(R)H=(HHIi----I, 2, 3, ] $1, 2, 3).
p=p(q, H)O, pqO for q--(1/2)[HlO. We write

(P(V) Q(V) i--0,1 2,3(8) A(V)=
VQ(V) R(V)!

where P(V), Q(V), and R(V) are 22, 26 and 66 matrices,
respectively. We write also v-(q-c, u), w=(u, u, H, H, H, S). Hence,

Note that
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V-(v, w). Notice that

if ul,__o--Hl__o--O. For a unction f(t, x) valued in R, d--6, 8, we set

(9) IIf(t) -- If(t)l, IIf I,r -=-ess sup f(t)l,
k=0 I1 m-2k teE0,T3

where =(,/3,/,/) and 3=3((x))’%. The weight (x) is
smooth and positive unction such that (x,)=x for x, small enough and
(x)=l for xl, and ]. 0 denotes L(R)-norm. Then X(T, R) consists
of all unctions f(t, x) for which If ,r . This is a Banach space with
II’l,r taken as the norm. Now we study the linearized problem.

(10) Ao(Y’)tV+ A,(V’)3,V=O in [0, T] R,
i=l

(10) V[:o=(Po+(1/2)[Ho[--c, Uo, Ho, So)Vo in R,
(10) u=O on [0, T]R.

Let , M_,, andM be positive constants and let X(T, R , M_,M)
be the set of unctions V’ satisfying the following conditions

’V’ e X(T, R), 3V’(O) e H-(R) for k=0, 1, ..., m--1,
u’=H’=0 on [0, T]3R,(1)
q’--(1/2)]H’[ for (t, x) e [0, T]R,
IIY’ _,,M_,, IIY’ ,,M.

Then we have
Proposition . Let m6 and let V’ e X(T, R , M_, M). Then,

(i) the null space of the boundary condition (10) is the maximally non-nega-
tive subspace of the boundary matrix --A(V’) for (, x)e [0, T] 3R, (ii)
any smooth solution of (10), satisfies H=0 on [0, T] 3R if H=0 on 3R.

To get a counterpart of Proposition 3 or a general domain 9, some
modification is needed. In this case we add the lower order term B(V’, V)

(0, O, O, O, L(V’, V), 0) to the left side of (10), where
L(V’, V)={H. ((u’ .))-u. ((H’ )n)}

and g=-V dist (x, F). Then the assertion (ii) remains valid with modified
(10). We owe this idea to Taira Shirota.

Proposition 4. Let m8 and le V’ e X(T, R , M_, M). Then
a solution V e X+(T, R , M_, M) of the problem (10), satisfies
(12) IIV($)[C(M_)[IV(O)I exp (C(M))t for O<t<T.
Here C(M), s=m--1, m, are positive constants depending only on M.

We now combine Propositions 3-(i) and 4 with the following argu-
ments" (i) non-characteristic regularization (see, e.g., [5]), (ii) approxi-
mation of V’ by smooth functions satisfying (11) nd tking the sme
initial value as or V’. Then we have

Proposition 5. Let m8 and let V’ e X(T, R , M_, M). Suppose
tha Vo e H+(R) and that Vo satisfies conditions (5) and (6). Then the
problem (10)_ has a unique solution V e X’(T, R) with the estimate (12).

By choosing the constants , M_,M, and T suitably and by making use
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of Propositions 5 and 3-(ii), we can show that if V’ e X(T, R+ , M_, M),
the solution V of (10)_ again lies in the same set. This implies that the
solution of the problem (1)_, (2)(3) is constructed by iteration combined
with smoothing of the initial data. Uniqueness of solution follows from
the energy inequality (5.20) in [8].

Now we sketch the proof of Proposition 4. First we prove the following
estimates by the standard energy method,

(13) V(t) ,. V(O) I,. + C(M) ( [v(r)] I+ w(r)[)dr,

(14) V(t)

_
V(O)]_+C(M_)f:[[V(r)dr,

for0gtT. Here
[m/2J

y(t) ,,= Z IY(t)l,l[v(t)]l= [v()].
Km k=O gm-2k+l

In deriving (13), the main terms to be estimated are the commutator parts
[, A(V’)]3V, [g[gm, which contain the terms such as

,R(V), w, with =1. We deal with these terms by regarding

3.Q(V’)3-3 and 3., . as the vector fields tangential to 3R. For
instance, we have 3.Q(V’)3-3 g(V’)x-3 where

g(V’) 0 Q(V’)(t.ox.,,dO,

because Q(V’),=o=O. Similar argument was used in [5]. Second, we
express 3v in terms of 3w and the tangential derivatives of V. Using this
expression and Rauch’s argument, we obtain
(5) Iv(t)][C(M_)( w(t) + V(t)

_+ V(t)l ,,).
Now we observe that w satisfies

( )RoW+ R3w=-- Qo3V+ Q3v
i=l i=l

In view of Rl=o=O, we conclude that

or 0<t<T. The estimate (12) follows from (13), (14), (15), (16), and
Gronwall’s inequality.
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