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71. Eigenvalues and Eigenvectors of Supermatrices

By Yuji KOBAYASHI*) and Shigeaki NAGAMACHI**)

(Communicated by Shokichi IYANAGA, M. J. A., Sept. 12, 1988)

1. Introduction and preliminaries. The theories of linear algebra
and analysis over a Grassmann algebra have been developed and are a. base
of the theory of supermanifolds, Lie supergroups and Lie superalgebras,
which are extensively used in modern physics. In his excellent book [1],
Berezin treated diagonalization of supermatrices, but he proved it only in
a direct way using induction on the number of generators of Grassmann
algebras. In this note we study the eigenvalue problem of supermatrices
in a general and natural manner by introducing the notions of (super)
eigenvalue and eigenvector. We need to consider odd eigenvectors as well
as even ones, and corresponding to them two kinds o eigenvalues appear.
Starting with the ordinary eigenvalues of the body of a given supermatrix
we can find its supereigenvalues by the perturbation method. Our method
gives an efficient algorithm to compute eigenvalues and eigenvectors, and
we demonstrate this by a simple example. The diagonalization of super-
matrices will be done as a by-product of the solution of the eigenvalue
problem..

Let A be a Grassmann algebra over the complex numbers C, generated
by a finite or infinite number of odd elements. The algebra A is. a direct
sum. o the even part A0 and the odd part A. The body of an element a of
/is. denoted by 5. Then the is a mapping of A to C.

Let p and q be nonnegative integers, and let n=p+q. By an even
(resp. odd) vector we mean a column (x, ..., x, x+x, ..., x,+q)r, where x, is
in A0 (resp. A) for i=1, ..., p and in A (resp. d0)or i--p/l,..., pq-q.

We consider a supermatrix M of theform M-- 9[’ where A (resp. D)is

a p p-matrix (resp. q q-matrix) whose entries, are in A0 and B (resp. C)
is a p q-matrix (resp. qp-matrix) whose entries are in A:. I x is an
even (resp. odd) vector, then Mx is. an even (resp. odd) vector.

A supernumber e A0 is called an eigenvalue of a supermatrix M, if
there exists a vector x such that Mx-----x and --(,..., +q)r is nonzero.
This vector x is called an eigenvector corresponding to . I x is even
(resp. odd), we say , is an eigenvalue of the first (resp. second) kind.

2. Eigenvalues of unmixed matrices. In this section we consider
the case where p--0 or q--O., and therefore the supermatrices are usual
matrices over A0. Let f(X)--- ao+aX-a.X- +aX e A0[X] be a poly-
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nomial over A0. The body f(X) of f(X) is defined to be the polynomial
o+X+dX +. /X e C[X] over C.

Lemma 2.1. Let f(X)e A0[X] be a monic polynomial of degree n.
Suppose that the body f(X) is separable and ,.. ",an are its roots in C.
Then f(X) has exactly n roots fl,..., n in Ao, and= for some per-
mutation of degree n.

Proof. We will construct the exact root of f(X) 2rom a root a of
f(X) by the Newton method. Let a(0)._a and define

( ---f(-)f’((-)- for

where if(X)is the derivative of f(X). Since is a simple root of f(X),
f’()O and f,(o) is invertible. Inductively we see that f’(-) is in-
verible, and above is well defined. Put 8=f((). Then we have

f((-))--f’((-))f((-))f’((-))-

+J a -))[f(a(-))f’(a(-))-]+...

3_lg(a(-))
fr some g(X)e Mo(X). Since 0=f(a)=0, 0 is nilpotent. Therefore =0
for sufficiently large k, and fl=a() is a root o f(X). Moreover

a. Thus we find roots fl,...,fl o f(X) such that =a,...,
a, and we have f(X)=(X--fl)...(X-fl). I fl is another root o f(X),
then f(fl)=(fl-fl)...(fl-fl)=0. We may assume =a. Then (fl-fl).
(fl-fl) has a nonzero body and invertible, and hence

Let M=(m) be a matrix over M0. We call the matrix M=() over
C the body o M. Then, the characteristic polynomial f(X)=det(XE--M)
o M is in 0[X] and the characteristic polynomial of is equal to f(X).

Proposition 2.2. Let f(X) be a characteristic polynomial of M and
suppose f(X) is separable. Then e o is an eigenvalue of M if is a root
of f(X)=0. Moreover, if x is an eigenvector of M corresponding to , then

is an eigenvector of corresponding to ].

Proof. Let2bearoot off(X). Then ] is a root off(X) and is an
eigenvalue o.f . Set N=2E-M=(n.), then =]E-. Since ] is a
simple root, some cofactor N of N is nonzero. Consider the following
Laplace expansion of N"

nN= det N=0, l= 1, ., n.

If we put x=(N,..., N)r, then we have
(2E--M)x=Nx=O and 20.

Thus 2 is an eigenvalue of M and x is its corresponding eigenvector.
Proposition 2.. If M has n different eigenvalues a,, a, then M

also has n different eigenvalues fl,..., n such that =a for i=l,..., n
and there exists an invertible matrix U over Ao such that U-’MU

diag (fl, .,
Proof. From Lemma 2.1 and Proposition 2.2, M has eigenvalues
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/, ..., such that =a and corresponding eigenvectors x, ..., x. Put
U--(x, x), then U is invertible because U=(2, ..., 2) is invertible.
Clearly, U-MU-- diag (fl, ..., ).

3. Eigenvalues of supermatrices. In this section we treat general
supermatrices given in Section 1.

Theorem 3.1. Let M=[ 9[ be a supermatrix such that the eigen-

values , ..., of A and the eigenvalues , ..., q of D are all different.
Then M has eigenvalues , ..., and ’, ..., q such that =, ...,=and =, ., 7q=q. Moreover, the eigenvalues fl, ., fl; (resp. ’, ., ’q)
are of the first (resp. second) kind, and there exists an invertible super-
matrix U such that U-MU diag (ill, ", fl;, ’, ", ’q).

Proof. From Propositon 2.3, there are invertible matrices U and U.
such that U;IAU-- diag (a, ., %) and U;DU diag (d, ., dq), where

=and= Let V=[0U0]andM’ [A’U. C’ D’ V-MV. Then we can find

an eigenvalue a+Z of M’ with fi=0 and its corresponding even eigenvector
z--(1, x., ., x,, y, ., y)r as follows. From the equation M’z=(a+/)z,
we have

By-- [,

ax2+By ax+[x,

( 1 ) %xp+B’y=ax+/xp,
cx+ dyl ay--[y,c’qx+ dqyq alyq+lYq,

where B is the i-th row oi B’, C is the i-th row of C’, x=(1, x, ..., x;)r and
y=(y, ..., yq)r. Since the body o. a--a--/=a--a-B;y is nonzero, the
first p equations in (1) give

x (a a B;y) By;
for i=2, ..., p. Thus x is a polynomial f(y) in anti-commuting variables
y,..., y over A, Substituting x by f(y) and/ by B;y in the (p+l)-th
equation and taking account of the fact that y=0, we get

(d-a-b g(y, ..., y))y h(y, ..., y),
where g and h are polynomials in y, ..., yq over A. Since g(y, ..., yq) is
bodyless and d--a has nonzero body, d-a+g(y yq) is invertible,
and we have

y--(d-a -t- g(y, ..., yq))-h(y, ...,
Similarly y is expressed as a polynomial in y/, ..., yq for 2<=]<=q. Hence
yq is written by the entries of M’, and the system (1) of equations is solved.
Thus we obtain an eigenvalue ,=a+Z of M’ and its corresponding eigen-
vector z. Similarly we get eigenvalues ,..., of M’ and their corre-
sponding eigenvectors z,..., z.

To obtain an eigenvalue ’ of the second kind, we solve the equation
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M’w--(d+z)w, where w--(x, ..., x,, y, ...y_, 1, y/, ..., yq)T is an odd
vector. Let w-(z,...,z,w,...,Wq), then w is invertible since W--E.
Now let U--VW, then U-MU--diag(, ..., , ’, ..., ’q).

Example :.2. Our proofs are constructive and give us an algorithm
to compute eigenvalues and eigenvectors of a given supermatrix. Now we
perform a computation for the case p--1 and q-1. Let M--]ca 1 be a

supermatrix such that a, d e A0 and b, c e A. Suppose that 5=/=d. Let us
calculate along the method in the proof of Theorem 3.1. From the equation

Iv
we have by--, c+dy=ay+y, where e A0 and y e A. Since y--O, we
have c+dy-ay, and the invertibility of a-d gives

y--(a--d)-lc, -b(a-d)-Ic.
Thus we get an eigenvalue a+bc(a--d)- and its corresponding eigenvector
(1, c(a-d)-)r. Similarly, we have another eigenvalue d+bc(a-d)- and
its corresponding eigenvector (b(d-a)-, 1)r. Let

Then

and we have

[(a-- d)- bc b(a-- d) ]U-1--(a-d)-2[--c(a-d) (a-d)2+bc]

U-MU-- [a+ bc(a- d)-
0

o ]d+bc(a_d)-

Reference

1 F.A. Berezin" Introduction to Superanalysis. Reidel Publishing" Co., Dordorecht,
Boston, Lancaster, Tokyo (1987).


