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1o Introduction. The existence and the uniqueness of the periodic
solutions of Li6nard equation"

+f(x)2+ g(x) O
or equivalently

(:=y--F(x)= --g(x) where r(x)-f: f(u)du,

has been widely discussed and numerous criteria have been developed.
Lins, de Melo and Pugh [l] showed that there exists at most one

periodic orbit when F is a polynomial of degree 3 and g(x)----x. Rychkov
[3] proved that if F is an odd polynomial of degree 5 and g(x)----x then there
exist at most 2 periodic orbits.

Lloyd [2] investigated the number of periodic solutions when F is
polynomial-like and showed that under certain conditions there are at least
n periodic solutions if F behaves like a polynomial of degree 2n+ 1 or 2n+2.
But the maximal number of periodic solutions has remained unsolved.

In this paper, we give certain conditions for the uniqueness of the
periodic solution in some bounded domains including the origin.

2. Lloyd’s results. Lloyd assumed in his paper [1]:
(1) F and g are continuously differentiable,
(2) xg(x)>O (x=/=:O),
(3) there exist k, (i=14) satisfying

[H]
k<k<0<k<k,
F(k), F(k) >0 and F(k), F(k)0,

f(x)O on [k,k]U[k,k], f(x)O on [R,R].
By (2), there is no critical point except for the origin.

For the convenience we write
a=F(k),

b,= e(k,) where e(x)=[ g(u)du and,, are the zeros of F(x) in [k,, k], [k, k,] respectively.
Under the following conditions:

1__ a+ bl- a(l) >_-(a+/6)2
[C1]

1 a+ 54- G(2)> 1 (as-/b)2,
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Lloyd proved that the closed curve ’ through the points (k, c) and (k,, c,)
can be constructed, and that the interior domain D surrounded by ’, is
negatively invariant. And this result with the asymptotic stability of the
origin implies that there exists at least one periodic orbit in D. But in
his paper [2], Lloyd did not prove the uniqueness of the periodic orbit
(not critical) in the domain D.

3. Main theorem. We will report that under certain conditions,
there exists a unique periodic orbit in D and give the sketch o the proo.

We assume that [tI] holds. Moreover under the following

1a+ b.’>2G(), -a+b2G() and
[C2]

la/ba(), 1--a+bG(),
2 2

the closed curve through the points (, 0), (k,a), (, 0), (k,a) can be
constructed in D and the interior donain D surrounded by is positively
invariant.

Sketch of proof. Let : be the subarc o contained in the halfplane
x0. : has two sections.

We consider the curve defined by

y+ G(x)= G().

This curve goes through (, 0). By (1/2)a+b2G(), this curve lies in, and by (1/2)a+bG(), this curve must intersects the curve y=F(x)
at x=+e (0,). We construct one section of by curve above where
x e [, ].

The other section of is constructed by y=F(x) where x e (+, ].
Similary, ;, the subarc of contained in the halfplane x0, is con-
structed by

1y + G(x)= G() and y=F(x).

Considering the directions o vector field and evaluating the differen-
tiation along the solutions, the positive invariance o D can be easily
proved. Q.E.D.

Theorem. We assume that [H] holds. Under the conditions [C1] and
[C2], there exists a unique periodic orbit (except for the critical point) in D.

Sketch of proof. [C1] guarantees the existence o periodic orbits in
D. We will prove the uniqueness.

By the invariance principle (c., or example [4]), we can show that
the solution starting rom a point in D is attracted to the origin and that
there is no periodic orbit in D. This result implies that all the periodic
orbits in D must have points in common with both the lines

x= and x=.

Lemma.
conditions"
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Let C be the innermost periodic orbit. We consider the orbit C start-
ing from a point in D which is on the line x=, y0, outside of C. If
this orbit does not cross the line x= in D again then this orbit must not
be periodic. So we assume that C crosses the line x= again. Moreover,
if C goes outside of ? then the negative invariance of D implies that C will
remain outside of ? in the future and that C cannot be a periodic orbit.
Therefore we can assume that C will cross the line x= in D outside of C.

Now, we define I, by

I= du’ ]= odu where u=y +G(x).

By the act that I=0, if we can show that Ii then it will be proved that
C is not periodic and that there is no periodic orbit outside o C in D.
Dividing C, C into our subarcs as follows"

C, C" the subarcs of C, C corresponding to x_,
C, C" the subarcs o C, C corresponding to _x_ and y0,
C, C" the subarcs of C, C corresponding to x.,
C, C" the subarcs of C, C corresponding to l_X. and y0,

respectively. We compare Ii and ii (i-lN4) where

I--c du -- du (i-- 1N4).

For comparing I and i, we use the expression for du"

du g(x)F(x) dx.
y--F(x)

The curves C and C can be regarded as the graphs of y=y(x) and y=)(x)
respectively.

f --g(x)F(x)g(x)F(x) dxI= dx.
1 y(x) F(x) )(x) F(x)

Similarly we can prove that I[.
For comparing I and i, we use the expression for du"

du=F(x)dy.
The curves C and C1 can be regarded as the graphs o x=x(y) and x= 2(y)
respectively.

I F(x(y))dy F((y))dy=.
Y

Similarly we can prove that Ii.
These inequalities show that I [ and the proof is completed. Q.E.D.
Remark 1. Lloyd also considered the case that

F(k), F(k)0 and F(k), F(k)0
and obtained a similar existence result given in Section 2. On the uni-
queness, our methods can be applied in the above case and a similar theorem
as above can be proved.

Remark 2. If it is assumed that there exists a bounded solution out-
side o then we have at least one periodic orbit outside o2 . But the
number o periodic solutions outside of ’ has not been decided.
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