85. A Cohomological Construction of Swan Representations over the Witt Ring. I

By Osamu HYODO

Department of Mathematics, Nara Women's University

(Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1988)

0. Let K be a complete discrete valuation field with residue field k. We assume k is a perfect field of characteristic p>0. For a finite Galois extension M/K with Galois group G, the Swan character $Sw_{g}: G \rightarrow Z$ is defined as follows.

$$Sw_{G}(\sigma) = \begin{cases} (1 - v_{M}(\sigma(\pi_{M}) - \pi_{M})) \cdot f & \text{for } 1 \neq \sigma \in I, \\ 0 & \text{for } \sigma \in I, \end{cases}$$
$$Sw_{G}(1) = -\sum_{1 \neq \sigma \in G} Sw_{G}(\sigma).$$

Here *I* denotes the inertia group, π_M a prime element of *M*, v_M the normalized valuation of *M* and *f* the degree of the residue field extension. Then it is a classical result that Sw_G is a character of a linear representation of *G* and that it can be defined over the *l*-adic field $Q_l (l \neq p)$ (resp. the fraction field of the Witt ring W(k)) [2], [8]. We call it the Swan representation of *G* and denote it by $Sw_{G,l}$ (resp. $Sw_{G,p}$).

In this note we construct $Sw_{a,p}$ cohomologically (or geometrically) when K is of equal characteristic p. The construction of $Sw_{a,l}$ $(l \neq p)$ was done by Katz [7]. He uses his theory of canonical extension (cf. Theorem in §3) and the machinery of *l*-adic etale cohomology. Instead of *l*-adic etale cohomology, we use a new theory of de Rham-Witt complex with logarithmic poles, which supplies us nice *p*-adic cohomology for open varieties. Recently, general theory of crystals with logarithmic poles has been developed independently by G. Faltings [1] and K. Kato [6].

The content of this note is as follows. In §1–2 we introduce the de Rham-Witt complex with logarithmic poles, and construct $Sw_{\sigma,p}$ in §3. The author would like to thank Prof. K. Kato, whose observation explained in §2 is the key to the definition of de Rham-Witt complex with logarithmic poles.

1. In this and next section we introduce the de Rham-Witt complex with logarithmic poles as a preparation for §3. Here we give a short exposition concerning what is necessary in §3, and full details will be treated elsewhere. In this note we always consider sheaves and cohomologies in the etale topology.

Let k be a perfect field of characteristic p > 0, X a smooth scheme over k and D a reduced normally crossing divisor in X. We will define sheaves of complexes $W_n \Omega_X^{\cdot}(\log D)$ (resp. $W_n \Omega_X^{\cdot}(-\log D)$), which we shall call the de Rham-Witt complex with logarithmic poles (resp. with minus logarithmic

poles).

As we work with the etale topology, we may assume that there is a smooth W = W(k)-scheme \mathscr{X} and a relatively reduced normally crossing divisor \mathscr{D} such that $\mathscr{X} \otimes_{W} k \simeq X$ and $\mathscr{D} \otimes_{\mathscr{X}} X = D$. Let $D = \sum D_i$ (each D_i is irreducible). Then $\mathscr{D} = \sum \mathscr{D}_i$ where $D_i = \mathscr{D}_i \otimes_W k$. We may assume moreover that there is a "frobenius" $f: \mathscr{X} \to \mathscr{X}$ such that f induces the absolute frobenius on X and $f^* \mathscr{D} = p \cdot \mathscr{D}$. For simplicity, we denote $\mathscr{X}_n = \mathscr{X} \otimes_W W_n$ where $W_n = W_n(k)$. Consider the de Rham complex with logarithmic poles $DR_{\mathscr{X}_n}(\log \mathscr{D}): \mathscr{O}_{\mathscr{X}_n} \longrightarrow \mathscr{Q}^1_{\mathscr{X}_n}(\log \mathscr{D}) \longrightarrow \mathscr{Q}^2_{\mathscr{X}_n}(\log \mathscr{D}) \longrightarrow \cdots$

 $DR_{\mathfrak{X}_n}(\log \mathcal{D}): \mathcal{G}_{\mathfrak{X}_n} \longrightarrow \mathcal{G} \otimes \Omega_{\mathfrak{X}_n}^1(\log \mathcal{D}) \longrightarrow \mathcal{G} \otimes \Omega_{\mathfrak{X}_n}^2(\log \mathcal{D}) \longrightarrow \mathcal{O} \otimes \Omega_\mathfrak{D}^2(\log \mathcal{D}) \longrightarrow \mathcalO \otimes \Omega_\mathfrak{D}^2(\log \mathcal{D})) \longrightarrow \mathcalO \otimes \mathcalO \otimes \Omega_\mathfrak{D}^2(\log \mathcal{D}) \longrightarrow \mathcalO \otimes$

where $\Omega_{\mathfrak{X}_n}^i(\log \mathfrak{D})$ is the differential forms with logarithmic poles along $\mathfrak{D}\otimes_w W_n$ and \mathfrak{I} denotes the ideal sheaf of \mathfrak{D} .

The key point is the observation due to K. Kato that the above complex does not depend on the choice of \mathcal{X} , \mathcal{D} and f in the derived category. This point will be explained in §2.

Now we can define the de Rham-Witt complex with logarithmic poles by the method of Illusie-Raynaud [5] III (1.5). We define

 $W_n \Omega_X^i(\pm \log D) := \mathcal{H}^i(DR_{\mathcal{X}_n}(\pm \log \mathcal{D})).$

These are naturally considered as coherent $W_n(\mathcal{O}_X)$ -modules. The boundary $d: W_n \mathcal{Q}_X^i(\pm \log D) \longrightarrow W_n \mathcal{Q}_X^{i+1}(\pm \log D)$ is defined to be the boundary map induced from the exact sequence

 $0 \longrightarrow DR_{\mathfrak{X}_n}(\pm \log \mathcal{D}) \longrightarrow DR_{\mathfrak{X}_{2n}}(\pm \log \mathcal{D}) \longrightarrow DR_{\mathfrak{X}_n}(\pm \log \mathcal{D}) \longrightarrow 0.$ We next define the restriction $\pi : W_{n+1} \mathcal{Q}_{\mathfrak{X}}^i(\pm \log D) \longrightarrow W_n \mathcal{Q}_{\mathfrak{X}}^i(\pm \log D).$ One checks that the endomorphism (f/p^{i-1}) on $\mathcal{Q}_{\mathfrak{X}/W}^i(\log \mathcal{D})$ (resp. $\mathcal{J} \otimes \mathcal{Q}_{\mathfrak{X}/W}^i(\log D)$) induces an injection

 $p: W_n \Omega^i_X(\pm \log D) \longrightarrow W_{n+1} \Omega^i_X(\pm \log D)$

whose image coincides with $p \cdot W_{n+1} \Omega_X^i$ (log *D*). This definition is independent of the choice of *f*, as is seen from the product construction in §2. Then we define π to be the surjective homomorphism which makes the following diagram commutative.

$$W_{n+1}\Omega_{X}^{i}(\pm \log D) \xrightarrow{\pi} W_{n}\Omega_{X}^{i}(\pm \log D)$$

$$p \searrow \qquad \qquad \downarrow p$$

$$W_{n+1}\Omega_{X}^{i}(\pm \log D) = \underbrace{\lim_{\pi} W_{n}\Omega_{X}^{i}(\pm \log D)}.$$
We define $W\Omega_{X}^{i}(\pm \log D) = \underbrace{\lim_{\pi} W_{n}\Omega_{X}^{i}(\pm \log D)}.$ The operator

$$F: W_{n+1} \mathcal{Q}_{X}^{i}(\pm \log D) \longrightarrow W_{n} \mathcal{Q}_{X}^{i}(\pm \log D)$$

(resp. $V: W_n \Omega_X^i(\pm \log D) \longrightarrow W_{n+1} \Omega_X^i(\pm \log D)$)

is defined to be the map induced from the natural projection

$$DR_{\mathfrak{X}_{n+1}}(\pm \log \mathcal{D}) \longrightarrow DR_{\mathfrak{X}_n}(\pm \log \mathcal{D})$$

(resp. "p": $DR_{\mathfrak{X}_n}(\pm \log \mathfrak{D}) \longrightarrow DR_{\mathfrak{X}_{n+1}}(\pm \log \mathfrak{D})$).

There is a relation between the de Rham-Witt complex with logarithmic poles and the de Rham-Witt complex. Here we restrict ourselves to the case dim X=1, as it suffices for later use. Let X be a proper smooth curve over k, and D_0 (resp. D_{∞}) be a disjoint union of closed points of X. We assume $D_0 \cap D_{\infty} = \phi$ and define O. Hyodo

 $W_n \Omega_X^{\cdot}(\log D_0 - \log D_{\infty})$ and $W \Omega_X^{\cdot}(\log D_0 - \log D_{\infty})$ to be the de Rham-Witt complex with logarithmic poles along D_0 and with minus logarithmic poles along D_{∞} . As is seen from the construction, we have exact sequences of complexes

$$(*) \qquad \begin{array}{c} 0 \longrightarrow W_n \Omega_X^{\cdot}(\log D_0 - \log D_\infty) \longrightarrow W_n \Omega_X^{\cdot}(\log D_0) \longrightarrow i_\infty * W_n \Omega_{D_\infty}^{\cdot} \longrightarrow 0, \\ 0 \longrightarrow W_n \Omega_X^{\cdot} \longrightarrow W_n \Omega_X^{\cdot}(\log D_0) \longrightarrow i_0 * W_n \Omega_{D_0}^{\cdot}[-1] \longrightarrow 0, \end{array}$$

where i_0 (resp. i_{∞}) denotes the closed immersion, and [-1] denotes the shift of the complex. By passing to the limit, we obtain

$$(**) \quad \begin{array}{c} 0 \longrightarrow W\Omega_{X}^{\cdot}(\log D_{0} - \log D_{\infty}) \longrightarrow W\Omega_{X}^{\cdot}(\log D_{0}) \longrightarrow i_{\infty} * W\Omega_{D_{\infty}}^{\cdot} \longrightarrow 0, \\ 0 \longrightarrow W\Omega_{X}^{\cdot} \longrightarrow W\Omega_{X}^{\cdot}(\log D_{0}) \longrightarrow i_{0} * W\Omega_{D_{0}}^{\cdot}[-1] \longrightarrow 0. \end{array}$$

Lemma. (1) $H^{q}(X, W\Omega_{X}^{\cdot}(\log D_{0} - \log D_{\infty}))$ is a free W-module of finite rank for all $q \geq 0$ and vanishes for all $q \geq 3$.

(2) If $D_0 \neq \phi$, we have $H^2(X, W\Omega_X^{\cdot}(\log D_0 - \log D_{\infty})) = 0.$

(3) If $D_{\infty} \neq \phi$, we have $H^{0}(X, W\Omega_{X}^{\cdot}(\log D_{0} - \log D_{\infty})) = 0$.

By (*), each $H^{q}(X, W_{n}\Omega_{X}^{\cdot}(\log D_{0} - \log D_{\infty}))$ is a finitely generated W-module. So

 $H^{q}(X, W\Omega_{X}^{\bullet}(\log D_{0} - \log D_{\infty})) = \varprojlim H^{q}(X, W_{n}\Omega_{X}^{\bullet}(\log D_{0} - \log D_{\infty}).$

By definition, (2) (resp. (3)) is reduced to the fact $H^{1}(X, \Omega_{X}^{1}(\log D_{0}))=0$ (resp. $H^{0}(X, \mathcal{J}_{D_{\infty}})=0$). The assertion (1) can be seen from the assumption dim X=1.

2. In this section we explain how one sees that $DR_{x_n}(\pm \log \mathcal{D})$ defined in §1 does not depend on the choice of liftings \mathcal{X}, \mathcal{D} and f in the derived category.

Choose another lifting $\mathfrak{X}', \mathfrak{D}'$ and f'. Let $h: \mathfrak{X} \to \mathfrak{X} \otimes_W \mathfrak{D}'$ be the blowing up defined by the product ideal of the ideals defined by $\mathfrak{D}_i \times_W \mathfrak{D}'_i$ $(1 \leq i \leq a)$, and let \mathcal{U} be the complement of the strict transforms of the closed subschemes $\mathfrak{X} \times_W \mathfrak{D}'_i$ and $\mathfrak{D}_i \times_W \mathfrak{X}'$ $(1 \leq i \leq a)$. By direct calculation, we see that $\mathcal{U} \to \mathfrak{X}$ (resp. $\mathcal{U} \to \mathfrak{X}'$) is smooth, and that the inverse image $\tilde{\mathfrak{D}}$ in \mathcal{U} of $\mathfrak{D} \times_W \mathfrak{D}'$ coincides with the inverse image of \mathfrak{D} (resp. \mathfrak{D}'). Moreover there is a closed immersion $X \subseteq \mathcal{U}$ such that $X \subseteq \mathcal{U} \to \mathfrak{X} \times_W \mathfrak{X}'$ coincides with the diagonal embedding. For this, note that the locus of the blowing-up is codimension one in X.

Let \mathcal{P} be the structure sheaf of the divided power envelope of $\mathcal{U}_n = \mathcal{U} \otimes_w W_n$ with respect to the ideal defined by the image of X. We define complexes

 $\begin{array}{l} \mathcal{P} \otimes DR_{\upsilon_n}(\log \tilde{\mathcal{D}}) \colon \mathcal{P} \longrightarrow \mathcal{P} \otimes_{\mathcal{O}} \Omega^1_{\upsilon_n}(\log \tilde{\mathcal{D}}) \longrightarrow \mathcal{P} \otimes_{\mathcal{O}} \Omega^2_{\upsilon_n}(\log \tilde{\mathcal{D}}) \longrightarrow, \\ \mathcal{P} \otimes DR_{\upsilon_n}(-\log \tilde{\mathcal{D}}) \colon \mathcal{J}\mathcal{P} \longrightarrow \mathcal{J}\mathcal{P} \otimes_{\mathcal{O}} \Omega^1_{\upsilon_n}(\log \tilde{\mathcal{D}}) \longrightarrow \mathcal{J}\mathcal{P} \otimes_{\mathcal{O}} \Omega^2_{\upsilon_n}(\log \tilde{\mathcal{D}}) \longrightarrow, \\ \text{where } \mathcal{O} = \mathcal{O}_{\upsilon_n} \text{ and } \mathcal{J} \text{ denotes the ideal sheaf of } \tilde{\mathcal{D}}. \end{array}$

Now the following lemma shows $DR_{x_n}(\pm \log \mathcal{D}_n) \simeq DR_{x'_n}(\pm \log \mathcal{D}'_n)$.

Lemma. The natural homomorphisms

 $DR_{\mathfrak{X}_n}(\pm \log \mathcal{D}) \longrightarrow \mathcal{P} \otimes DR_{\mathfrak{V}_n}(\pm \log \tilde{\mathcal{D}})$ and

 $DR_{\mathfrak{X}'_{\mathfrak{H}}}(\pm \log \mathcal{D}') \longrightarrow \mathcal{P} \otimes DR_{\mathfrak{V}_{\mathfrak{H}}}(\pm \log \tilde{\mathcal{D}})$

are quasi-isomorphisms.

We give a proof for the first morphism. The problem is etale local on X. So we may assume $\mathcal{U}=\mathfrak{X}\otimes_{W}W[S_{1},\cdots,S_{d}]$. Hence we have

 $\mathscr{D} \otimes DR_{\mathfrak{U}_n}(\log \widetilde{\mathscr{I}}) \simeq DR_{\mathfrak{X}_n}(\pm \log \mathscr{D}_n) \otimes_{W_n} (\mathscr{Q}^{\boldsymbol{\cdot}}_{W_n[\mathcal{S}]} \otimes_{W_n[\mathcal{S}]} W_n \langle S \rangle),$

where $W_n[S]$ (resp. $W_n\langle S \rangle$) denotes the polynomial ring (resp. divided power algebra) in d variables S_1, \dots, S_d . The lemma follows from the fact that $\Omega_{W_n[S]} \otimes_{W_n[S]} W_n\langle S \rangle$ is quasi-isomorphic to W_n .

(to be continued.)

References

- [1] G. Faltings: F-isocrystals on open varieties. Results and conjectures (1988) (preprint).
- [2] J.-M. Fontaine: Groupes de ramification et représentations d'Artin. Ann. Sci. École Norm Sup., 4, 337-392 (1971).
- [3] H. Gillet and W. Messing: Cycle classes and Riemann-Roch for crystalline cohomology. Duke Math. J., 55, 501-538 (1987).
- [4] A. Grothendieck (rédigé par I. Bucur): Formule d'Euler-Poincaré en cohomologie étale. SGA 5, Springer LNM n° 589, pp. 372-406 (1977).
- [5] L. Illusie et M. Raynaud: Les suites spectrales associées au complexe de de Rham-Witt. Publ. Math. IHES, 57, 73-212 (1983).
- [6] K. Kato: The limit Hodge structures in the mixed characteristic case. Manuscript (1988).
- [7] N. M. Katz: Local-to-global extensions of representations of fundamental groups. Ann. Inst. Fourier, 36, 69-106 (1986).
- [8] J.-P. Serre: Sur la rationalité des représentations d'Artin. Ann. of Math., 72, 406-420.