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Oo Let K be a complete discrete valuation field with residue field k.
We assume k is a perfect field of characteristic p0. For a finite Galois
extension M/K with Galois group G, the Swan character Sw: G-Z is
defined as follows.

for l=/=a e I,Swc,(a)=
0 for a e I,

Swa(1)=- Swa(a).
lCaG

Here I denotes the inertia group, a prime element o M, v the normal-
ized valuation o M and f the degree of the residue field extension. Then
it is a classical result that Swo is a character of a linear representation of
G and that it can be defined over the/-adic field Q (l=/=p) (resp. the fraction
field o the Witt ring W(k)) [2], [8]. We call it the Swan representation o
G and denote it by Sw, (resp. Swo,,).

In this note we construct Swo, cohomologically (or geometrically)
when K is of equal characteristic p. The construction of Swa, (l=/=p) was
done by Katz [7]. He uses his theory o canonical extension (ct. Theorem
in 3)and the machinery o /-adic etale cohomology. Instead o/-adic

etale cohomology, we use a new theory o de Rham-Witt complex with loga-
rithmic poles, which supplies us nice p-adic cohomology or open varieties.
Recently, general theory o crystals with logarithmic poles has been devel-
oped independently by G. Faltings [1] and K. Kato [6].

The content o this note is as ollows. In 1-2 we introduce the de
Rham-Witt complex with logarithmic poles, and construct Swo, in 3.
The author would like to thank Pro. K. Kato, whose observation explained
in 2 is the key to the definition o de Rham-Witt complex with logarithmic
poles.

1o In this and next section we introduce the de Rham-Witt complex
with logarithmic poles as a preparation for 3. Here we give a short ex-
position concerning what is necessary in 3, and ull details will be treated
elsewhere. In this note we always consider sheaves and cohomologies in
the etale topology.

Let k be a perfect field o characteristic p0, X a smooth scheme over
k and D a reduced normally crossing divisor in X. We will define sheaves
,o complexes W/2r (log D) (resp. Wn2r (-log D)), which we shall call the de
Rham-Witt complex with logarithmic poles (resp. with minus logarithmic
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poles).
As we work with the etale topology, we may assume that there is a

smooth W-W(/c)-scheme

_
and a relatively reduced normally crossing

divisor such that _(R)/c=X and _(R) X--D. Let D= D (each D is
irreducible). Then _= where D-_q)(R)/c. We may assume more-
over that there is a "frobenius" f: 2C--27 such that f induces the absolute
frobenius on X and f*-p..@. For simplicity, we denote L----_7(R)W
where W= W(/c). Consider the de Rham complex with logarithmic poles

DR:r (log _) (C) (log L0) ;:(log) 3..

DR(--log)" @Ox: >5@(log) >@(log) .,
where (log)is the differential forms with logarithmic poles along

2W and denotes the ideal shea of .
The key point is the observation due to K. Kato that the above complex

does not depend on the choice of, and f in the derived category. This
point will be explained in 2.

Now we can define the de Rham-Witt complex with logarithmic poles
by the method o Illusie-Raynaud [5] III (1.5). We define

WJ2(log D) "= (DRx(log)).
These are naturally considered as coherent W(z)-modules. The boundary
d" W(log D) >W9+l(logD) is defined to be the boundary map
induced rom the exact sequence

0 >DR(log) >DR(log)--DR(log) >0.
We next define the restriction " W+(log D) >W(log D). One
checks that the endomorphism (f/p*-) on/(log) (resp./(log D))
induces an injection

p" W9 (-&log D) >W+(log D)
whose image coincides with p. W+19 (log D). This definition is independ-

ent of the choice of f, as is seen from the product construction in 2. Then
we define to be the surjective homomorphism which makes the following

diagram commutative.

W+9(log D) >W9(log D)
p

w (og D).
We define W(log D): W9(log D). The operator

F" Wn (+ log D) >W9(log D)
(resp. V" WD(log D) W+D(log D))

is defined to be te map induced rom te natural proection

(resp. "p" DRx(log) DR+,(log )).
There is a relation between the de Rham-Witt complex with logarith-

mic poles and the de Rham-Witt complex. Here we restrict ourselves to
the case dim X= I, as it suces or later use. Let X be a proper smooth
curve over , and D0 (resp. D) be a disjoint union o closed points o X.
We assume D0D= and define
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Wtg (log Do- log D) and Wtg (log Do- log D)
to be the de Rham-Witt complex with logarithmic poles along Do and with
minus logarithmic poles along D. As is seen rom the construction, we
have exact sequences o complexes

(,) 0 >WY2 (log Do- log D)- >WY2 (log D0) >i W >0,
0 >W9 >W9(log D0) >i0 * WgLo[- 1] >0,

where i0 (resp. i) denotes the closed immersion, and [-1] denotes the shift
o the complex. By passing to the limit, we obtain

(**) 0 )Wg(log D0-- log D) )Wg(log D0) >i Wg >0,
0 >Wg )Wg(log D0) )io Wgo[- 1] )0.

Lemma. (1) Hq(X, Wg(logD0--1ogD)) is a free W-module of
finite rank for all qO and vanishes for all q 3.
(2) If D0, we have H(X, W(log D0--1og D)):0.
(3) If D, we have H(X, Wg(logD0--1ogD))=0.

By (.), each Hq(X, W9(logDo--logD)) is a finitely generated W-
module. So

Hq(X, Wg(log D0-- log D)) =]im Hq(X, W9(log D0-- log D).
By definition, (2) (resp. (3)) is reduced to the act H(X, 9(logDo))=O
(resp. H(X, .)=0). The assertion (1) can be seen rom the assumption
dim X=I.

2. In this section we explain how one sees that DRx (log) de-
fined in 1 does not depend on the choice o litings , and f in the
derived category.

’ be the blow-Choose another liting ’,’ and f’. Let h
ing up defined by the product ideal o the ideals defined by , w (lgi
a), and let -U be the complement o the strict transforms o the closed
subschemes X w’, and , Xw’ (lia)._ By direct calculation, we see
that (resp. ’) is smooth, and that the inverse image
o Xw2’ coincides with the inverse image o (resp. ’). Moreover
there is a closed immersion XcU such that Xw’ coincides
with the diagonal embedding. For this, note that the locus o the blow-
ing-up is codimension one in X.

Let be the structure shea o the divided power envelope o =wW with respect to the ideal defined by the image o X. We define
complexes
@DRv(log )" >ogb.(log ) >ogv(log) >,

2DRv(--log) 5 >59v(log) >5 v(log)
where O=Ov and 5 denotes the ideal shea of .

Now the ollowing lemma shows DRx(log)DRx(log).
Lemma. The natural homomorphisms

DRx.(log) >@DRv.(log) and

DRx(log ’) >DRv.(log)
are quasi-isomorphisms.
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We give a proof or the first morphism. The problem is etale local on
X. So we may assume cU=(R)W[S, ..., S]. Hence we have

@DRv(log )-DRx (+/- log -n)@Wn (/2E@wE Wn<S}),
where W[S] (resp. W<S>) denotes the polynomial ring (resp. divided
power algebra) in d variables S, ..., Sa. The lemma follows from the fact
that 9;s@W,<S> is quasi-isomorphic to W.

(to be continued.)
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