83. A Note on E-direct and S-inverse Systems

By Bhavanari SATYANARAYANA Department of Mathematics, Nagarjuna University (Communicated by Shokichi IYANAGA, M. J. A., Oct. 12, 1988)

Introduction. Let R be a fixed (not necessarily commutative) ring with unity. Throughout this paper we are concerned with left *R*-modules and M stands for a unitary R-module. The submodule generated by an element $a \in M$ is denoted by Ra. Like in Fleury [1], Goldie [2], Reddy and Satyanarayana [3], Satyanarayana [4] and Sharpe and Vamoes [5] we shall use the following terminology. A non-zero submodule K of M is called essential in M (or M is an essential extension of K) if $K \cap A = 0$ for any other submodule A of M, implies A=0. M has finite Goldie dimension (abbr. FGD) if M does not contain a direct sum of infinite number of non-zero submodules. Equivalently, M has FGD if for any strictly increasing sequence H_0, H_1, \cdots of submodules of M, there is an integer i such that for every $k \ge i$, H_k is an essential submodule in H_{k+1} . M is uniform if every non-zero submodule of M is essential in M. Then it is proved (Goldie [2]) that in any module M with FGD, there exist non-zero uniform submodules U_1, U_2, \dots, U_n whose sum is direct and essential in M. The number n is independent of the uniform submodules. This number n is called the *Goldie* dimension of M and denoted by dim M. A submodule A of M is termed small in M if A+H=M implies H=M for any other submodule H of M. M is called *hollow* if every proper submodule of M is small in M. A module M has finite spanning dimension (abbr. FSD) if for every strictly decreasing sequence H_0, H_1, \cdots of submodules of M there is an integer i such that for every $k \ge i$, H_k is small in M. A family $\{M\}_{i \in I}$ of submodules of M is said to be a *direct system* if, for any finite number of elements i_1, i_2, \dots, i_k of I, there is an element i_0 in I such that $M_{i_0} \supseteq M_{i_1} + \cdots + M_{i_k}$. A family $\{M_i\}_{i \in I}$ of submodules of M is said to be an *inverse system* if, for any finite number of elements i_1, i_2, \dots, i_k of I, there is an element i_0 in I such that $M_{i_0} \subseteq M_{i_1} \cap \cdots \cap M_{i_k}$

We are now introducing two notions *E*-direct system and *S*-inverse system. A family $\{M_i\}_{i \in I}$ of submodules of *M* is said to be an *E*-direct system if for any finite number of elements i_1, i_2, \dots, i_k of *I* there is an element i_0 in *I* such that $M_{i_0} \supseteq M_{i_1} + M_{i_2} + \dots + M_{i_k}$ and M_{i_0} is non-essential submodule of *M*. A family $\{M_i\}_{i \in I}$ of submodules of *M* is said to be an *S*-inverse system if for any finite number of elements i_1, i_2, \dots, i_k of *I* there is an element i_0 in *I* such that $M_{i_0} \subseteq M_{i_1} \cap M_{i_2} \cap \dots \cap M_{i_k}$ and M_{i_0} is non-small.

Note. (i) A family of submodules $\{M_i\}_{i \in I}$ is an *E*-direct system if and only if the family is a direct system and each M_i of the family is a

non-essential submodule of M.

(ii) A family of submodules of M is an S-inverse system if and only if it is an inverse system and each element of the family is a non-small submodule.

Theorems. The purpose of this note is to prove the following two results.

Theorem 1. For an R-module M the following two conditions are equivalent:

(i) M has FGD; and

(ii) Every E-direct system of non-zero submodules of M is bounded above by a non-essential submodule of M.

Theorem 2. (i) If M has FSD then every S-inverse system of submodules of M is bounded below by a non-small submodule of M.

(ii) If every S-inverse system of M is bounded below by a non-small and non-hollow submodule then M has FSD.

Proof of Theorem 1. Suppose first that M has FGD and $n = \dim M$. Then there exist uniform submodules U_1, U_2, \dots, U_n of M whose sum is direct and essential in M. Suppose M has an E-direct system $\{M_i\}_{i \in I}$ of non-zero submodules of M which is not bounded by any non-essential sub-Then $Z = \sum_{i \in I} M_i$ is an essential submodule of M. Let module of M. $1 \le j \le n$. Since Z is essential in M, $Z \cap U_j \ne 0$ and so there exists a nonzero element $a_i \in Z \cap U_i$. Since $a_i \in Z$ there exists a finite subset I_j of Isuch that $a_j \in \sum_{i \in I_j} M_i$. This is true for all j $(1 \le j \le n)$. Therefore there exist elements a_1, a_2, \dots, a_n of M and finite subsets I_1, I_2, \dots, I_n of I such that the sum $Ra_1 + \cdots + Ra_n$ is contained in $\sum_{i \in J} M_i$ where $J = I_1 \cup I_2 \cup \cdots$ $\cup I_n$. Since $a_i \in U_i$ for $1 \le i \le n$, the sum $Ra_1 + Ra_2 + \cdots + Ra_n$ is essential and so $\sum_{i \in J} M_i$ is an essential submodule of M. Since $\{M_i\}_{i \in I}$ is an *E*-direct system and J is a finite subset of I, there exists an i_0 in I such that $\sum_{i \in J} M_i$ is contained in M_{i_0} and M_{i_0} is a non-essential submodule of M. This is a contradiction to the fact that $\sum_{i \in J} M_i$ is an essential submodule of M. This establishes (ii). Now assume (ii), but suppose M is not a module with FGD. Then there exist an infinite number of non-zero submodules of Mwhose sum is direct. Let $\{B_i\}_{i \in H}$ be the set of all distinct non-zero submodules of M. Consider the family

$$S = \left\{ \{B_i\}_{i \in I} \middle/ I \text{ is an infinite subset of } H \text{ such that} \right\},\$$

which is not empty by our assumption. For any two elements $\{B_i\}_{i\in I}$ and $\{B_i\}_{i\in J}$ of S we define $\{B_i\}_{i\in I} \leqslant \{B_i\}_{i\in I} \notin \{B_i\}_{i\in I}$ if and only if $I \subseteq J$. To show S is inductive let $\{\{B_i\}_{i\in I_s}\}_{s\in A}$ be a chain of elements of S. Now the union of this chain, that is $\{B_i\}_{i\in I}$ where $I = \bigcup_{s\in A} I_s$, is a member of S. For this we have to show that $\sum_{i\in I} B_i$ is direct. Let $b_{i_s} \in B_{i_s}$ for $1 \leq s \leq n$, and $i_s \in I$ such that $b_{i_1} + b_{i_2} + \cdots + b_{i_n} = 0$. Let $1 \leq s \leq n$. Since $i_s \in I = \bigcup_{i\in A} I_i$ there exists $j_s \in A$ such that $i_s \in I_{j_s}$. Since $\{I_i\}_{i\in A}$ is a chain of sets, there is a $k \in A$ such that $I_{j_s} \subseteq I_k$ for all $1 \leq s \leq n$. Now for all $1 \leq s \leq n$, the B_{i_s} belongs to $\{B_i\}_{i\in I_s}$.

No. 8]

Therefore $\sum_{s=1}^{n} B_{i_s}$ is direct. Now $b_{i_1+b_{i_2}}+\cdots+b_{i_n}=0$ and $b_{i_s} \in B_{i_s}$ implies $b_{i_j}=0$ for $1 \le j \le n$. Therefore $\sum_{i \in I} B_i$ is direct and hence S is inductive. By the Zorn's Lemma S contains a maximal element, say $\{B_i\}_{i \in N}$. Consider the family

 $\mathcal{B} = \{\sum_{i \in J} B_i / J \text{ is a finite subset of } N\}.$

Now for any finite number of elements $\sum_{j \in J_1} B_j, \dots, \sum_{j \in J_s} B_j$ of the family \mathcal{B} , their sum is contained in $\sum_{j \in J^*} B_j$ where $J^* = J_1 \cup J_2 \cup \dots \cup J_s$. Since J^* is finite we have that J^* is a proper subset of N and so $\sum_{i \in J^*} B_i$ is non-essential. Hence the family is an E-direct system. By the assumed condition (ii), the family \mathcal{B} should be bounded above by a non-essential submodule S of M. Since S is non-essential, there exists $x \in H$ such that $S \cap B_x = 0$. Since $S \cap B_x = 0$ we have that $x \notin N$. Now consider $N^* = N \cup \{x\}$. Then $\{B_i\}_{i \in N^*}$ is an element of S and $\{B_i\}_{i \in N} < \{B_i\}_{i \in N^*}$, which is a contradiction to the maximality of $\{B_i\}_{i \in N}$ in S. This completes the proof of Theorem.

Before proving our Theorem 2, we prove the following Lemma.

Lemma. Let A be a non-small submodule of M. If every submodule of A is small in M then A is hollow.

Proof. Suppose A is not hollow. Then there exist two proper submodules K and L of A such that K+L=A. Since A is non-small there exists a proper submodule X of M such that A+X=M. Now K+L+X=M. Since K is small in M we have L+X=M. Similarly since L is small in M we have X=M, a contradiction to the fact that X is a proper submodule of M.

Proof of Theorem 2. (i) Suppose M has FSD. Let $\{M_i\}_{i\in I}$ be an S-inverse system of submodules of M. If $\{M_i\}_{i\in I}$ is not bounded below by a non-small submodule, then $\bigcap_{i\in I} M_i$ is a small submodule. Let $i_1 \in I$. Since $\bigcap_{i\in I} M_i$ is small, and M_{i_1} is non-small, there is an $j_1 \in I$ such that $M_{i_1} \not\subseteq M_{j_1}$. Now there is an $i_2 \in I$ such that $M_{i_2} \subseteq M_{i_1} \cap M_{j_1}$. Again since $\bigcap_{i\in I} M_i$ is small and M_{i_2} is non-small there is an $j_2 \in I$ such that $M_{i_2} \not\subseteq M_{j_2}$. Now there is an $i_3 \in I$ such that $M_{i_3} \subseteq M_{i_2} \cap M_{j_2}$. If we continue this process, we get a strictly decreasing sequence M_{i_1}, M_{i_2}, \cdots of non-small submodules of M, a contradiction to the fact M has FSD. This completes the proof of the part.

(ii) If M has no FSD there is a strictly decreasing infinite chain M_1, M_2, \cdots of non-small submodules of M. Let $\{M_i\}_{i \in B}$ be the set of all distinct non-small submodules of M. Consider

 $\mathcal{J} = \Big\{ \{M_i\}_{i \in J} \middle/ \begin{matrix} J \text{ is an infinite subset of } B \text{ and } \{M_i\}_{i \in J} \text{ is a chain} \Big\}, \\ \text{with respect to the set theoretic inclusion} \Big\},$

which is not empty by our assumption. For any two elements $\{M_i\}_{i\in J}$ and $\{M_i\}_{i\in J^*}$ of \mathcal{G} we define $\{M_i\}_{i\in J} \leqslant \{M_i\}_{i\in J^*}$ if and only if $J \subseteq J^*$. To show \mathcal{G} is inductive, let $\{\{M_i\}_{i\in J_s}\}_{s\in A}$ be a chain of elements from \mathcal{G} . Then the union of this chain, that is $\{M_i\}_{i\in I}$ where $I = \bigcup_{s\in A} J_s$, is also in \mathcal{G} . For this consider M_{i_1}, M_{i_2} where $i_1, i_2 \in I$. Then $i_1 \in J_{s_1}, i_2 \in J_{s_2}$ for some $s_1, s_2 \in A$. Since $\{J_i\}_{i\in A}$ is also a chain of sets under the set theoretic inclusion, without loss

of generality we may suppose that $J_{s_1} \subseteq J_{s_2}$. This implies M_{i_1}, M_{i_2} are members of $\{M_i\}_{i \in J_{s_2}}$. Since $\{M_i\}_{i \in J_{s_2}}$ is an element of \mathcal{G} we have either $M_{i_1} \subseteq M_{i_2}$ or $M_{i_2} \subseteq M_{i_1}$. Therefore $\{M_i\}_{i \in I}$ is an element in \mathcal{G} . Hence \mathcal{G} is inductive. Now by the Zorn's Lemma there exist a maximal element, say $\{M_i\}_{i \in J^*}$. Since $\{M_i\}_{i \in J^*}$ is a chain of non-small submodules, it is also an S-inverse system and so $\bigcap_{i \in J^*} M_i$ is a non-small and non-hollow submodule of M. Since $\bigcap_{i \in J^*} M_i$ is non-small and non-hollow by the above Lemma $\bigcap_{i \in J^*} M_i$ properly contains a submodule H' which is non-small in M. Now $H' = M_x$ for some fixed $x \in B$. Since $\bigcap_{i \in J^*} M_i$ properly contains M_x we have that $x \notin J^*$. Now consider $I^* = J^* \cup \{x\}$. Clearly $\{M_i\}_{i \in I^*} > \{M_i\}_{i \in J^*}$ and $\{M_i\}_{i \in I^*}$ is an element of \mathcal{G} , a contradiction to the maximality of $\{M_i\}_{i \in J^*}$. Therefore M has FSD. This completes the proof of Theorem.

Acknowledgements. I am very grateful to Prof. D. Ramakotaiah and Dr. Y. V. Reddy for their encouragement. I gratefully acknowledge financial support from the Council of Scientific and Industrial Research, New Delhi by the grant No. 13(4513-A)/85-Pool. I thank the referee for his valuable comments.

References

- P. Fleury: A note on dualizing Goldie dimension. Canad. Math. Bull., 17, 511-517 (1974).
- [2] A. W. Goldie: The structure of noetherian rings. Lectures on Rings and Modules. Springer-Verlag, New York (1972).
- [3] Y. V. Reddy and Bh. Satyanarayana: A note on modules. Proc. Japan Acad., 63A, 208-211 (1987).
- [4] Bh. Satyanarayana: On modules with finite spanning dimension. ibid., 61A, 23-25 (1985).
- [5] D. W. Sharpe and P. Vamos: Injective Modules. Cambridge University Press (1972).