81. On Complexes in a Finite Abelian Group. II

By Tamás Szónyi*) and Ferenc Wettl**)
(Communicated by Shokichi Iyanaga, m. J. a., Oct. 12, 1988)

This is continued from [0].
Proof of Theorem 2. Let $a \in K$ and put $K^{\prime}=K-a$. Then $K+K=$ $K \circ K$ means $K^{\prime}+K^{\prime}=K^{\prime} \circ K^{\prime},\left|K^{\prime}\right|=k,\left|K^{\prime} \circ K^{\prime}\right|=m$. We have $0 \in K^{\prime}$, and " $K+K$ is a coset of a subgroup of G " means " $K^{\prime}+K^{\prime}$ is a subgroup of G ". So rewriting K for K^{\prime}, Theorem 2 can be reformulated as follows.

Theorem 2'. Let $0 \in K$ and suppose $K+K=K \circ K$. If $2 m<3 k$, then $K+K$ is a subgroup of G.

The proof of this theorem depends on the following
Theorem of Kneser ([1], see Mann [2, p. 6]). For any complexes A, B of G, there exists a subgroup H of G such that $A+B=A+B+H$ and $|A+B|$ $\geq|A+H|+|B+H|-|H|$.

For $A=B=\mathrm{K}$, we obtain a subgroup H such that $K+K=K+K+H$ and $|K+K| \geq 2|K+H|-|H|$. If $2 m<3 k$, we have $m=|K+K|<(3 / 2) k \leq$ $(3 / 2)|K+H|$, and so $2|H|>|K+H|$. As $K+K=K+K+H$, we have $K+K$ $\supset H$. If $(K+K) \backslash H \neq \varnothing$, there should be $x, y \in K$ such that $x+y \notin H$. Then x or $y \notin H$. Suppose $x \notin H$. Then $K+H \supset(x+H) \cup H$ and $|K+H| \geq 2|H|$. Thus $K+K=H$.

Remark. If $G=Z / p Z, p$ being a prime, then $K+K=G$ or $|K+K| \geq$ $2|K|-1$. This follows from the theorem of Kneser or from CauchyDavenport's theorem (see Mann [2, p.3]).

Let G be any other abelian group than $Z \mid p Z$ and H a non-trivial subgroup of G (i.e. $H \neq\{0\}, H \neq G$). Put $K=H \cup(x+H), 2 x \notin H$. Then $|K+K|$ $=(3 / 2)|K|$, so that $3 / 2$ in (ii) can not be replaced by a smaller number.

Since $K \circ K \neq K+K$, in order to prove Theorem 3 we may suppose K satisfies (0). Moreover we may prove Theorem 3 for K with the following maximality property : there is no $s \in G \backslash K$ such that
(*) $\quad|(K \cup\{s\}) \circ(K \cup\{s\})| \leq|K \circ K|+1$.
In fact, if there exists $s \in G \backslash K$ which satisfies (*), then $K^{\prime}=K \cup\{s\}$ satisfies (0) and if Theorem 3 is proved with respect to K^{\prime}, then the inequality also holds true for K.

Lemma 4. If $|G|$ is odd, K satisfies (0) and there is no $s \in G \backslash K$ which satisfies (*), then $\left|K^{w}\right| \leq m-k+3$ for every $w \in(K \circ K) \backslash K$.

Proof. Suppose $\left|K^{w}\right| \geq m-k+4$ for some $w \in(K \circ K) \backslash K$. Put $K_{(x)}=$ $\{y \in K \backslash\{x, 0\} \mid x+y \in K\}$ for $x(\neq 0) \in K$, then $K_{(x)} \rightarrow K \cap K_{x}, y \rightarrow x+y$ is a

[^0]bijection. Thus $\left|K^{w}\right|+\left|K_{(x)}\right|=\left|K^{w}\right|+\left|K \cap K_{x}\right| \geq m-k+4+2 k-3-m=k+1$, in virtue of what we noticed just before Lemma 2. Therefore $\left|K^{w} \cap K_{(x)}\right|$ $=\left|K^{w}\right|+\left|K_{(x)}\right|-\left|K^{w} \cup K_{(x)}\right| \geq k+1-(k-1)=2$.

Let $y_{1}, y_{2} \in K^{w} \cap K_{(x)},\left(y_{1} \neq y_{2}\right)$, then $w=y_{1}+z_{1}=y_{2}+z_{2}, z_{1} \in K \backslash\left\{y_{1}, 0\right\}, z_{2}$ $\in K \backslash\left\{y_{2}, 0\right\}, \quad z_{1} \neq z_{2}, x+y_{1}, x+y_{2} \in K, \quad y_{1}, \quad y_{2} \in K \backslash\{x, 0\}, w+x=\left(x+y_{1}\right)+z_{1}=$ $\left(x+y_{2}\right)+z_{2}$. If $x+y_{1}=z_{1}$ and $x+y_{2}=z_{2}$, then $z_{1}+z_{1}=z_{2}+z_{2}$, which is a contradiction, since $|G|$ is odd. Hence $x+y_{1} \neq z_{1}$ or $x+y_{2} \neq z_{2}$, that is, $w+x \in$ $K \circ K$ for every $x(\neq 0) \in K$. Therefore $(K \cup\{w\}) \circ(K \cup\{w\})=K \circ K$ contradicting with the maximality property.

Proof of Theorem 3. We may suppose the maximality property. As $|G|$ is odd, K contains no involution. Thus the argument in the proof of Lemma 3 is valid and using Lemma 4 we obtain in the same way

$$
(k-1)(k-2) \leq(k-1)(m-k+1)+(m-k+1)(m-k+3)
$$

where, as $m \geq 1$,

$$
m \geq \frac{1}{2}\left(k-3+\sqrt{\left.5 k^{2}-10 k+9\right)}=\frac{\sqrt{5+1}}{2} k-\frac{\sqrt{5}+3}{2}+O\left(\frac{1}{k}\right) .\right.
$$

Remark. Here also we have $m \geq(3 / 2) k$ for $k \geq 22$.
Acknowledgement. The authors thank the referee for the considerable help in revising the manuscript. They are indebted very much to him who suggested the present clearer version of this paper.

References

[0] T. Szónyi and F. Wettl: On complexes in a finite abelian group. I. Proc. Japan Acad., 64A, 245-248.
[1] M. Kneser: Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen. Math. Z., 61, 429-434 (1955).
[2] H. B. Mann: Addition Theorems. Interscience Publishers, New York, London, Sydney (1965).

[^0]: *) Computer and Automation Institute, Hungarian Academy of Sciences.
 **) Mathematical Department of Technical University, Budapest, Faculty of Transportation Engineering.

