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This is continued from [0].
3. In this section we give the construction of Swan representations.

Let K-k((T-)) be a complete discrete valuation field and M be a finite
Galois extension of K with Galois group G. N. M. Katz proved the following

Theorem ([7] Theorem (1.4.1)). There exists a canonical finite etale
Galois covering

U ;G,--Spec/c[T, T-1]
which satisfies the following properties.
( 1 ) U(R)o, Spec k((T-1))_ Spec M
( 2 ) U(R)a. Spec k((T)) is a disjoint union of the spectra of tamely ramified
extensions of k((T)).

We denote by X
g
)P the compactification of U. ;G,. Note that g

actors as X: .P ;P, where m denotes the residue field of M. We
denote by Do (resp. D) the inverse image o T-0 (resp. T= c)with re-
duced scheme structure. Then X\ U=D0 I_[ D. Let WtO (log Do-log D)
be the de Rham-Witt complex with logarithmic poles along Do and with
minus logarithmic poles along D as in 1. As Do and D are stable under
the action of G, a e G=Gal (U/G,) acts on the ree W-module

H(X, Wg"x (log Do--log D))
by transportation of structures. The following Proposition shows that this
is the desired space of the Swan representation of G.

Proposition. The trace of the action of a e G on
H(X, WtO’x (log Do--log D))

coincides with Sw(a).
In the following we denote the alternating sum o the trace o the

action of a on ree W(k)-modules by
Tr (a) RF(X, )) := , (- 1) Tr (a: Hq(X, )).

q20

By Lemma and exact sequences (**) in 1, it suffices to show

Tr (a" RF(X, Wt2"x)= {do -k (- Swo(a) -kf) or a e I,
for a e I,

where d denotes the degree of the closed subscheme of Do fixed by a and
f--[m: k] coincides with degree of D over k.

The proof of this formula is the same as the proof of the Weil formula
[4] 5: The case a-1 is the Hurwitz formula. The case a=/=l is deduced
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rom the fixed point ormula (crystalline cohomology is a Weil cohomology
theory [3]). We omit the detail.

Remark and question. (1) Contrary to the/-adic case, Swa,, can not
always be realized as a projective W(k)[G]-module. This phenomenon seems
to suggest that one can not expect the "Grothendieck-Ogg-Shafarevich
ormula" for crystals defined over open smooth curves. (cf. [7] (1.6).)

(2) Nevertheless, are there nice theory of the Swan conductor (or ir-
regularity) 2or crystals?
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