95. A Note on Isocompact wM Spaces and Mappings

By G. R. HIREMATH

Department of Mathematics, Talladega College

(Communicated by Shokichi IYANAGA, M. J. A., Nov. 14, 1988)

Introduction. T_2 isocompact wM spaces behave well like T_2 paracompact M spaces. For example, if $f: X \to Y$ is a closed, continuous map of a T_2 isocompact wM space X onto Y, then $Y = \bigcup_{n \ge 0} Y_n$, where, for each $n \ge 1$, Y_n is discrete in Y and $f^{-1}(y)$ is compact for each $y \in Y_0$. As such, we investigate some interesting properties of such spaces and their images under nice maps. Refer [5], [1], [4], [2] and [3] respectively, for the notions of q, point countable and countable type, wM, isocompactness, and quasi- G_a diagonal.

Main section. Theorem 1. (i) $A T_1$ space X of point countable type is a q space. (ii) A regular isocompact q space X is point countable type.

Proof of (i). Let $x \in X$ and K be a compact subset of X of countable character with $x \in K$. Let $\{U_n | n \ge 1\}$ be a decreasing local base at K. To claim that $\{U_n\}_n$ is a q sequence at x, let $x_n \in U_n$ for each n. Suppose $\{x_n\}_n$ does not cluster. Then, $D = \{x_n | n \ge 1\}$ is closed. Assume $K \cap D = \emptyset$. Then, X - D is an open nhd of K. Since, $U_n \not\subset X - D$ for each n, we have a contradiction.

Proof of (ii). Let $x \in X$ and $\{U_n\}_n$ be a q sequence at x with $\overline{U}_{n+1} \subset U_n$ for each n. Let $C(x) = \bigcap_n U_n$. It follows that C(x) is of countable character and $x \in C(x)$. Therefore X is of point countable type. Q.E.D.

Theorem 2. If a regular space X with quasi- G_{δ} diagonal is a q space or a space of point countable type, then the space is first countable.

Proof. By the Theorem 1 (i), X is a q space in either case. Let $\{\mathcal{U}_n\}_n$ be a quasi- G_δ diagonal sequence. Let $x \in X$, $\{G_n\}_n$ be a q sequence at x and $\{n_k\}_k$ be the strictly increasing sequence of natural numbers with $x \in St(x, \mathcal{U}_n) = \bigcup \{U \in \mathcal{U}_n \mid x \in U\}$, iff $n = n_k$ for some $k \leq n$. By induction, we can obtain a sequence $\{H_m\}_m$ of open sets with $x \in H_{m+1} \subset \overline{H}_{m+1} \subset H_m \cap G_{m+1} \cap U_{n_{m+1}}$ for each m, where $x \in U_{n_m} \in \mathcal{U}_{n_m}$. It follows that $\{H_m \mid m \geq 1\}$ is a local base at x. Q.E.D.

Corollary 2.1. If a T_2 wM space with quasi- G_3 diagonal is a quotient image of a locally compact, separable and metrizable space, then the space is locally compact, separable and metrizable.

Proof. Apply the Theorem 2 and a result of A. H. Stone [7]. Q.E.D. Theorem 3. $A T_2$ isocompact wM space X is countable type.

Proof. Let $\{U_n\}_n$ be a decreasing wM sequence and $K \subset X$ be compact. Let \mathcal{W}_1 be a finite subcollection of U_1 with $K \subset W_1 = \bigcup \mathcal{W}_1$. Let \mathcal{W}'_2 be an open collection with $K \subset \bigcup \mathcal{W}'_2$ such that $\overline{\mathcal{W}}'_2 = \{\overline{W} \mid W \in \mathcal{W}'_2\}$ refines $\mathcal{W}_1 \land U_2$ $= \{W \cap U \mid W \in \mathcal{W}_1 \text{ and } U \in \mathcal{U}_2\}. \text{ Let } \mathcal{W}_2 \text{ be a finite subcollection of } \mathcal{W}'_2 \text{ with } K \subset W_2 = \bigcup \mathcal{W}_2. \text{ Continuing this way, we can obtain a sequence } \{\mathcal{W}_n\}_n \text{ of finite open collections with } K \subset W_n = \bigcup \mathcal{W}_n \text{ and } \overline{\mathcal{W}}_{n+1} \text{ refines } \mathcal{W}_n \wedge \mathcal{U}_{n+1} \text{ for each } n. \text{ Let } D = \bigcap_n W_n. \text{ Then } K \subset D \text{ and } D \text{ is a compact set of countable character.} Q.E.D.$

Corollary 3.1. A T_2 isocompact wM space is a k space.

By a result of J. E. Vaughan [8], a Tychonoff isocompact wM space is a generalized G_{δ} set in its compactification and equivalently, its complement in its compactification is Lindelöf.

By a result of H. H. Wicke [9], a T_2 space is point countable type, iff it is an open, continuous image of a T_2 isocompact wM space; a T_1 regular isocompact space is a q space, iff it is an open, continuous image of a T_2 isocompact wM space (in fact, a T_2 paracompact p space).

Theorem 4. A quotient image of a regular isocompact q space is a k space.

Proof. Let $f: X \to Y$ be a quotient map of a regular isocompact q space X onto Y. Let $F \subset Y$ be such that $F \cap C$ is closed in C for every compact $C \subset Y$. To claim that F is closed in Y, we prove that $f^{-1}(F)$ is closed in X. Suppose $x \in \overline{f^{-1}(F)} - f^{-1}(F)$. Let $\{U_n\}_n$ be a q sequence at x with $\overline{U}_{n+1} \subset U_n$ for each n and $C(x) = \bigcap_n U_n$. Then, C(x) is compact. Let f(x) = y.

(1) Suppose $x \in \overline{C(x) \cap f^{-1}(F)}$. For any open nhd W of y, $f^{-1}(W) \cap C(x) \cap f^{-1}(F) \neq \emptyset$. Therefore $y \in \overline{f(C(x)) \cap F}$. Since $x \notin f^{-1}(F)$, we have $x \in C(x) \cap (X - f^{-1}(F))$, which implies $y \in f(C(x)) \cap (Y - F)$. Therefore $f(C(x)) \cap F$ is not closed in f(C(x)), which is a contradiction to the definition of F.

(II) Suppose $x \notin \overline{C(x) \cap f^{-1}(F)}$. There is an open nhd U of x with $\overline{U} \cap C(x) \cap f^{-1}(F) = \emptyset$. Let $V_n = U \cap U_n$ for each n, and $x_n \in V_n \cap f^{-1}(F)$ for each n. Let x_0 be a cluster point of the sequence $\{x_n\}_n$. Then $x_0 \in C(x) \cap \overline{U}$. Let $K = \overline{\{x_n \mid n \ge 1\}}$. Then K is compact, and $x_0 \in \overline{K} \cap f^{-1}(F)$. Let $y_0 = f(x_0)$. Now $x_0 \in K, x_0 \in C(x) \cap \overline{U}$ and $\overline{U} \cap C(x) \cap f^{-1}(F) = \emptyset$ imply that $x_0 \in K \cap (X - f^{-1}(F))$. Therefore $y_0 \in f(K) \cap (Y - F)$. If W is an open nhd of y_0 , then $f^{-1}(W) \cap K \cap f^{-1}(F) \neq \emptyset$, which implies that $W \cap f(K) \cap F \neq \emptyset$. Therefore $y_0 \in \overline{f(K) \cap F}$, which implies that $f(K) \cap F$ is not closed in f(K), which contradicts the definition of F. Therefore $f^{-1}(F) = \overline{f^{-1}(F)}$. Q.E.D.

Corollary 4.1. A regular isocompact q space is a k space.

By a result of J. Nagata [6], we have the following corollaries.

Corollary 4.2. A T_2 space is a k space, iff it is a quotient image of a T_2 isocompact wM space.

Corollary 4.3. A T_1 regular isocompact q space is a quotient image of a T_2 paracompact M space.

Theorem 5. Let $f: X \rightarrow Y$ be a closed, continuous map of a T_2 isocompact wM space X onto Y. Then the following are equivalent.

(i) Y is a regular q space.

(ii) Y is a regular space of point countable type.

- (iii) The boundary $\partial f^{-1}(y)$ of $f^{-1}(y)$ is compact for each $y \in Y$.
- (iv) Y is a T_2 isocompact wM space.

Proof. By the Theorems 1 and 3, we have $(iv) \rightarrow (ii) \rightarrow (i)$. E. Michael has shown that $(i) \rightarrow (iii)$, [5]. We need to show, now, that $(iii) \rightarrow (iv)$: For each $y \in Y$, let

$$L(y) = \begin{cases} \partial f^{-1}(y) & \text{if } \partial f^{-1}(y) \neq \emptyset; \\ f^{-1}(y) - \{p_y\}, \text{ where, } p_y \in f^{-1}(y), & \text{if } \partial f^{-1}(y) = \emptyset. \end{cases}$$

Let $X_0 = X - L$, where $L = \bigcup \{L(y) \mid y \in Y\}$. Then X_0 is closed in X, and X_0 is a T_2 isocompact wM space. Let $h: X_0 \to X$ be defined by h(x) = x for each $x \in X_0$. Then $g = f \circ h$ is a perpect map of X_0 onto Y. Therefore Y is a T_2 isocompact (see [2]) and wM (see [4]) space. [Note that a space being a T_2 isocompact wM space is a perpect property.] Q.E.D.

References

- A. V. Arhangel'skii: On a class of spaces containing all metric spaces and all locally bicompact spaces. Soviet Math. Dokl., 4, 1051-1055 (1963).
- P. Bacon: The compactness of countably compact spaces. Pacific J. Math., 32(3), 587-592 (1970).
- [3] R. E. Hodel: Metrizability of topological spaces. ibid., 55(2), 441-459 (1974).
- [4] T. Ishii: wM spaces and closed maps. Proc. Japan Acad., 46, 16-21 (1970).
- [5] E. Michael: A note on closed maps and compact sets. Israel J. Math., 2, 173-176 (1964).
- [6] J. Nagata: Quotient and biquotient spaces. ibid., 45, 25-29 (1969).
- [7] A. H. Stone: Metrizability of decomposition spaces. Proc. Amer. Math. Soc., 7, 690-700 (1956).
- [8] J. E. Vaughan: Spaces of countable and point countable type. Trans. Amer. Math. Soc., 51, 341-350 (1970).
- [9] H. H. Wicke: On the Hausdorff open continuous images of Hausdorff paracompact p spaces. ibid., 22, 136-140 (1969).