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Introduction. T2 isocompact wM spaces behave well like T2 paracom-
pact M spaces. For example, if f" X-Y is a closed, continuous map of a
T. isocompact wM space X onto Y, then Y-- U n>0 Y, where, for each n> 1,
Y is discrete in Y and f-(y) is compact for each y e Y0. As such, we in-
vestigate some interesting properties of such spaces and their images under
nice maps. Refer [5], [1], [4], [2] and [3] respectively, for the notions of
q, point countable and countable type, wM, isocompactness, and quasi-G
diagonal.

Main section. Theorem 1. ( A T1 space X of point countable type
is a q space. (ii) A regular isocompact q space X is point countable type.

Proof of (i).. Let x e X and K be a compact subset of X of countable
character with x e K. Let (U ]n> 1} be a decreasing local base at K. To
claim that {U} is a q sequence at x, let x e U for each n. Suppose
does not cluster. Then, D={xnlnl} is closed. Assume KD----O. Then,
X--D is an open nhd of K. Since, UX-D for each n, we have a con-
tradiction.

Poof of (ii). Let x e X and (U) be a q sequence at x with n+Un
for each n. Let C(x)= U. It follows that C(x) is of countable charac-
ter and x e C(x). Therefore X is of point countable type. Q.E.D.

Theorem 2. If a regular space X with quasi-G diagonal is a q space
or a space of point countable type, then the space is first countable.

Proof. By the Theorem 1 (i), X is a q space in either case. Let (U}n
be a quasi-G diagonal sequence. Let x e X, (G}n be a q sequence at x and
(n} be the strictly increasing sequence of natural numbers with x e
St(x, cU)= (U e cUlx e U), iff n=n for some k<n. By induction, we
can obtain a sequence (H} of open sets with x H+H+H]G+
U+, for each m, where x e U e cU. It follows that (H m> 1} is a local
base at x. Q.E.D.

Corollary 2.1. If a T2 wM space with quasi-G diagonal is a quotient
image of a locally compact, separable and metrizable space, then the space
is locally compact, separable and metrizable.

Proof. Apply the Theorem 2 and a result of A. H. Stone [7]. Q.E.D.
Theorem 3. A T2 isocompact wM space X is countable type.

Proof. Let (U} be a decreasing wM sequence and KcX be compact.
Let ff/ be a finite subcollection of cU with KW= U. Let cf/ be an
open collection with KU such that q=(WI W e q/F;} refines
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--(W U iW e and U e U}. Let q/ be a finite subcollection of q/ with
KW--(J.. Continuing this way, we can obtain a sequence (q/} of
finite open collections with KW--q/Y and/ refines c/g/cU/ or
each n. Let D-- W. Then KcD and D is a compact set of countable
character. Q.E.D.

Corollary .1. A T isocompact wM space is a ] space.
By a result of J. E. Vaughan [8], a Tychonoff isocompact wM space is

a generalized G set in its compactification and equivalently, its complement
in its compactification is LindelSf.

By a result of H. H. Wicke [9], a T. space is point countable type, iff
it is an open, continuous image ot a T isocompact wM space; a T regular
isocompact space is a q space, iff it is an open, continuous image o a T.
isocompact wM space (in act, a T. paracompact p space).

Theorem 4. A quotient image of a regular isocompact q space is a l
space.

Proof. Let f" X-Y be a quotient map o a regular isocompact q space
X onto Y. Let Fc Y be such that F C is closed in C or every compact
Cc Y. To claim that F is closed in Y, we prove that f-(F) is closed in X.
Suppose x f-(F)--f-(F). Let {U} be a q sequence at x with U/U
for each n and C(x)-- U. Then, C(x) is compact. Let f(x)--y.

( I ) Suppose x C(x) f-(F). For any open nhd W o y, f-(W) C(x)
f-(F)=/=. Therefore y e f(C(x)) F. Since x e f-(F), we have x e C(x)
(X-f-(F)), which implies y e f(C(x)) (Y-F). Therefore f(C(x)) F

is not closed in f(C(x)), which is a contradiction to the definition of F.
(II) Suppose x e C(x) f-(F). There is an open nhd U of x with U

C(x) f-(F)--. Let V-U U or each n, and x e V f-(F) or each
n. Let x0 be a cluster point of the sequence (x}.. Then Xo e C(x) U. Let
K--{Xnln>/1}. Then K is compact, and xoeKj-(F). Let Yo--f(Xo). Now
Xo e K, Xo e C(x) and C(x) f-(F)--O imply that Xo eK (X--f-(F)).
Therefore Yo e f(K) (Y-F). If W is an open nhd of Y0, then f-(W) K

f-(F)=/=O, which implies that W f(K) F=/=O. Therefore Yo e f(K) F,
which implies that f(K)F is not closed in f(K), which contradicts the

definition o F. Therefore f-(F)----f-(F). Q.E.D.

Corollary 4.1. A regular isocompact q space is a space.
By a result of J. Nagata [6], we have the ollowing corollaries.
Corollary 4.2. A T space is a 1 space, if] it is a quotient image of a

T. isocompact wM space.
Corollary 4.. A T regular isocompact q space is a quotient image

of a T paracompact M space.

Theorem 5. Let f" X--Y be a closed, continuous map of a T iso-
compact wM space X onto Y. Then the following are equivalent.

( ) Y is a regular q space.
(ii) Y is a regular space of point countable type.
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(iii) The boundary 3f-i(y) of f_l(y) is compact for each y e Y.
(iv) Y is a T. isocompact wM space.
Proof. By the Theorems 1 and 3, we have (iv)-(ii)-+(i). E. Michael

has shown that (i)-+(iii), [5]. We need to show, now, that (iii)(iv) For
each y e Y, let

L(y)= f-(Y) i f-(y)=/=
(y)--{pv}, where, p e f-(y), i 3f-l(y)=0.

Let Xo--X--L, where L= (J{L(y)ly e Y}. Then X0 is closed in X, and X0
is a T2 isocompact wM space. Let h: Xo-X be defined by h(x)--x or each
x e X0. Then g=f h is a perpect map o X0 onto Y. Therefore Y is a T2
isocompact (see [2]) and wM (see [4]) space. [Note that a space being a
isocompact wM space is a perpect property.] Q.E.D.
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