89. Decreasing Streamlines of Solutions and Spectral Properties of Linearized Operators for Semilinear Elliptic Equations

By Takashi Suzuki
Department of Mathematics, Faculty of Science, Tokyo Metropolitan University
(Communicated by Kôsaku Yosida, m. J. A., Nov. 14, 1988)

§1. Introduction. Let $\Omega \subset \boldsymbol{R}^{N}$ be a bounded domain with a smooth boundary $\partial \Omega$ and $f: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a C^{1} function. We consider the semilinear elliptic equation
(1)

$$
-\Delta u=f(u), \quad u>0(\text { in } \Omega), \quad u=0(\text { on } \partial \Omega)
$$

Then the linearized operator around the solution $u=u(x) \in C^{2}(\Omega) \cap C^{0}(\bar{\Omega})$ is given by $A \equiv A(u)=-\Delta-f^{\prime}(u)$ in $L^{2}(\Omega)$ with $D(A)=H_{0}^{1} \cap H^{2}(\Omega)$. In the previous work [1], we have given some streamlines in Ω along which the solution decreases, when Ω is a symmetric domain in \boldsymbol{R}^{2}. There, we restricted ourselves to the mild solution, that is, the case when the second eigenvalue $\mu_{2}=\mu_{2}(u)$ of $A=A(u)$ is positive. In this article, we shall note that conversely, the decreasing streamlines of the solution contain some information about the eigenvalues of $A(u)$.

Thus, we suppose that the domain is the unit ball: $\Omega=\{|x|<1\} \subset \boldsymbol{R}^{N}$. Then from [5], every solution $u=u(x)$ of (1) is radial: $u=u(|x|)$ and $u_{r}<0$ for $0<r=|x|<1$. Therefore, the set of eigenvalues $\sigma(u)$ of $A(u)$ is divided as $\sigma(u)=\cup_{m=0}^{\infty} \sigma_{m}(u)$ according to the principle of separation of variables. Namely, let $\left\{\rho_{m}\right\}_{m=0}^{\infty}\left(0=\rho_{0}<\rho_{1}<\rho_{2}<\cdots\right)$ be the eigenvalues of $-\Lambda$, where Λ denotes the Laplace-Beltrami operator on $S^{N-1}=\{|x|=1\}$. In fact we have $\rho_{m}=m(2 \nu+m)$, where $2 \nu=N-2$. Further, multiplicity κ_{m} of ρ_{m} (and hence that of $\mu \in \sigma_{m}(u)$) is as follows: for $N=2$ we have $\kappa_{m}=1(m=0)$ and $\kappa_{m}=2$ ($m \geqq 1$) ; for $N>2$ we have $\kappa_{m}=(2 m+N-2)(m+N-3)!/(N-2)!m!$ (see, e.g. [9]). Then $\sigma_{m}(u)$ denotes the set of eigenvalues of the ordinary differential operator $A_{m}(u)=-\left(d^{2} / d r^{2}\right)-((N-1) / r)(d / d r)-c(r)+\left(\rho_{m} / r^{2}\right)$ with $\left.(d / d r) \cdot\right|_{r=0}$ $=\left.\cdot\right|_{r=1}=0$, where $c(r)=f^{\prime}(u)$.

Now, for these sets $\sigma_{m}(u)$ ($m=0,1,2, \cdots$), we claim the following, where $\boldsymbol{R}_{+}=(0, \infty)$:

Theorem. If $f\left(\boldsymbol{R}_{+}\right) \subset \boldsymbol{R}_{+}$, then $\sigma_{m}(u) \cap(-\infty, 0]=\phi$ for $m \geqq 1$. In particular, $\operatorname{dim} \operatorname{Ker} A(u)$ is at most 1 for any solution u on the ball $\Omega=\{|x|<1\}$ $\subset \boldsymbol{R}^{N}$, provided that $f\left(\boldsymbol{R}_{+}\right) \subset \boldsymbol{R}_{+}$.
§2. Proof of Theorem. Set $\sigma_{m}(u)=\left\{\mu_{j}^{m} \mid j=0,1,2, \cdots\right\}$ with $-\infty<$ $\mu_{0}^{m}<\mu_{1}^{m}<\cdots$. Since $\rho_{m^{\prime}}>\rho_{m}$ if $m^{\prime}>m$, we have $\mu_{0}^{1}<\mu_{0}^{2}<\cdots$ and hence we have only to prove that $\mu_{0}^{1}>0$.

The eigenfunction φ of $A(u)$ corresponding to μ_{0}^{1} is of the form $\varphi(x)=$
$\Phi(r) \chi(\omega)(x=r \omega)$, where $\Phi=\Phi(r)$ denotes the eigenfunction of $A_{1}(u)$ and $\chi=$ $\chi(\omega)$ denotes the second eigenfunction of $-\Lambda$. Thus $\chi=\chi(\omega)$ has exactly two nodal domains $S_{ \pm}$on $S^{N-1}=\{|x|=1\}$ and $S_{ \pm}$are chemi-spheres. Therefore, $\mu_{0}^{1}>0$ follows from the existence of a $w \in C^{2}\left(\Omega_{+}\right) \cap C^{0}\left(\bar{\Omega}_{+}\right)$satisfying
(2) $\quad\left(-\Delta-f^{\prime}(u)\right) w<0, \quad w<0$ (in Ω_{+}) and $\quad w=0$ (on $\partial \Omega_{+}$)
by Jacobi's method ([2]), where $\Omega_{+}=\left\{x \in \Omega \mid x_{n}>0\right\}$ denotes a chemi-ball. We shall give such a w for the cases of $N=2$ and $N=3$, for simplicity.

The case $N=2$. Let [] : $C \rightarrow \boldsymbol{R}^{2}$ be the canonical mapping. Through some calculations we can derive from $-\Delta u=f(u)$ that

$$
\begin{equation*}
-\Delta w=2\left(\operatorname{Re} \nu_{z}\right) f(u)+f^{\prime}(u) w \quad(\text { in } \Omega) \tag{3}
\end{equation*}
$$

where $w=\nabla u \cdot[\nu]$ for each holomorphic function $\nu=\nu(z)\left(z=x_{1}+i x_{2}\right)$. Taking $\nu(z)=i\left(1+z^{2}\right)$, we have $\operatorname{Re} \nu_{z}=-2 x_{2}<0$ in $\Omega_{+}=\left\{|x|<1, x_{2}>0\right\}$, so that $(-\Delta-$ $\left.f^{\prime}(u)\right) w<0$ in Ω_{+}by $f(u)>0$. Further, each flow l starting from $\bar{\Omega}_{+} \cap$ $\left\{x_{2}=0\right\}$ subject to the vector field $\nu=\nu(z)$ goes outside from the level set $\{|x|=c\}(0<c<1)$ in Ω_{+}. Hence $w<0$ in Ω_{+}, because $u=u(|x|)$ with $u_{r}<0$ $(0<r<1)$. Finally l is orthogonal to $\left\{x_{2}=0\right\}$ and goes along $\partial \Omega$ if it starts from the end points of $\bar{\Omega}_{+} \cap\left\{x_{2}=0\right\}$. Hence $\left.w\right|_{\partial \Omega}=0$.

The case $N=3$. If $\Omega=\{|x|<1\} \subset \boldsymbol{R}^{N}$ and $u=u(r)(r=|x|)$, the relation $-\Delta u=f(u)$ gives

$$
-\Delta w=2\left(\omega \cdot \xi_{r}\right) f(u)-u_{r}\left(\Delta-2 \frac{N-1}{r} \frac{\partial}{\partial r}+\frac{N-1}{r^{2}}\right)(\omega \cdot \xi)+f^{\prime}(u) w \quad(\text { in } \Omega),
$$

where $w=\nabla u \cdot \xi$ for each vector field $\xi \in C^{2}\left(\Omega \rightarrow \boldsymbol{R}^{N}\right)$.
For $\Omega_{+}=\left\{(x, y, z) \in \boldsymbol{R}^{3} \mid x^{2}+y^{2}+z^{2}<1, y>0\right\}$, we take $\xi=\xi(\rho, y)$ with $\rho=$ $\sqrt{x^{2}+z^{2}}$, of which each section cut by a plane T containing the y-axis is similar to [ν]. Obviously $\omega \cdot \xi>0$ and hence $w<0$ in Ω_{+}. Further, $w=0$ on $\partial \Omega_{+}$is verified in a similar way. We shall show that $\omega \cdot \xi_{r}<0$ and

$$
\left(\Delta-2 \frac{N-1}{r} \frac{\partial}{\partial r}+\frac{N-1}{r^{2}}\right)(\omega \cdot \xi)>0 \quad \text { in } \Omega_{+} .
$$

Then the desired relation (2) will follow from $f(u)>0$ and $u_{r}<0$.
By the definition, the vector field ξ lies in each plane T containing the y-axis. Without loss of generality, suppose that T contains the x-axis, too. Then on this plane T, ξ is nothing but [ν, where $\nu(z)=i\left(1+z^{2}\right)$ with $z=x+i y$. Therefore, we have if $y>0$ that $\omega \cdot \xi_{r}=\operatorname{Re} \nu_{z}<0$ and

$$
\begin{aligned}
& \left(\Delta-2 \frac{N-2}{r} \frac{\partial}{\partial r}+\frac{N-1}{r}\right)(\omega \cdot \xi)=\left(\Delta_{2}-\frac{4}{r} \frac{\partial}{\partial r}+\frac{2}{r^{2}}\right)(\omega \cdot \xi) \\
& \quad=\left(\Delta_{2}-\frac{2}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}}\right)(\omega \cdot \xi)+\left(\frac{1}{r^{2}}-2 \frac{1}{r} \frac{\partial}{\partial r}\right)(\omega \cdot \xi)=\frac{1}{r^{2}} \omega \cdot \xi-\frac{2}{r} \omega \cdot \xi_{r}>0
\end{aligned}
$$

§3. An example. We consider the nonlinear eigenvalue problem

$$
\begin{equation*}
-\Delta u=\lambda e^{u}(\text { in } \Omega), \quad u=0(\text { on } \partial \Omega) \tag{4}
\end{equation*}
$$

in $\Omega=\{|x|<1\} \subset \boldsymbol{R}^{N}$, where λ is a positive parameter. Its bifurcation diagram has been completely known ([4], [6]). In particular, when $2<N<10$, the solution kranch \mathcal{S} in $\lambda-u$ plane starting from $(\lambda, u)=(0,0)$ bends infinitely many times around the line $\lambda=2\{(N-2)\}^{-1}$. With each point $g=(\lambda, u) \in \mathcal{S}$,
the linearized operator $A(g)=-\Delta-\lambda e^{u}$ is associated. In the same way, the set of eigenvalues of $A(g)$ is divided as $\sigma(g)=\cup_{m=0}^{\infty} \sigma_{m}(g)$. From Theorem, we have $\sigma_{m}(g) \cap(-\infty, 0]=\phi$ for $m \geqq 1$. Hence, at each bending point \bar{g} in \mathcal{S}, the eigenvalue 0 of $A(\bar{g})$ is simple so that the local analysis of [3] works.

Thus, around $\bar{g}=(\bar{\lambda}, \bar{u})$, the branch is parametrized as $g(t)=(\lambda(t), u(t))$ $(|t|:$ small) with $(\lambda(0), u(0))=(\bar{\lambda}, \bar{u}), \dot{\lambda}(0)=0$ and $\dot{u}(0)=\bar{\varphi}$, where $\bar{\varphi} \not \equiv 0$ is an eigenfunction of $A(\bar{g})$ corresponding to the simple eigenvalue 0 . Therefore, we have a smooth relation in t (see [7], e.g.): $A(g(t)) \varphi(t)=\mu(t) \varphi(t)$ for $|t|$: small, with $\mu(0)=0$ and $\varphi(0)=\bar{\varphi}$. From this relation, we can deduce

$$
\begin{equation*}
\dot{\mu}(0)\|\bar{\varphi}\|^{2}=\ddot{\lambda}(0) \quad\left(e^{\pi}, \bar{\varphi}\right), \tag{5}
\end{equation*}
$$

where $\|\cdot\|$ and (,) are the norm and inner product in $L^{2}(\Omega)$, respectively. Here,

$$
\bar{\lambda}\left(e^{a}, \bar{\varphi}\right)=\int_{\Omega}(-\Delta \bar{\varphi}) d v=-\int_{\partial \Omega} \frac{\partial \bar{\varphi}}{\partial n} d S=-\left.|\partial \Omega| \frac{\partial \bar{\varphi}}{\partial r}\right|_{r=1} \neq 0
$$

so that $\dot{\mu}(0) \neq 0$ by $\ddot{\lambda}(0) \neq 0$.
In this way, we have gotten the conclusion. Along the branch \mathcal{S}, through each bending point the number $l=\#\left\{\sigma_{0}(g) \cap(-\infty, 0]\right\}$ increases one by one and hence from 0 to infinite. This fact has been known up to the second bending ([8]).

References

[1] Chen, Y.-G., Nakane, S., and Suzuki, T.: Elliptic equations on $2 D$ symmetric domains; Local profile of mild solutions (1988) (preprint).
[2] Courant, R. and Hilbert, D.: Methods of Mathematical Physics. Interscience, vol. 1, New York (1953).
[3] Crandall, M. G. and Rabinowitz, P. H.: Some continuation and variational methods for positive solutions of nonlinear elliptic eigenvalue problems. Arch. Rat. Mech. Anal., 58, 207-218 (1975).
[4] Gel'fand, I. M.: Some problems in the theory of quasilinear equations. Amer. Math. Soc. Transl., 1(2), 29, 295-381 (1963).
[5] Gidas, B., Ni, W.-M., and Nirenberg, L.: Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 209-243 (1979).
[6] Joseph, D. D. and Lundgren, T. S.: Quasilinear Dirichlet problems driven by positive sources. Arch. Rat. Mech. Anal., 49, 241-269 (1973).
[7] Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin-HeidelbergNew York (1966).
[8] Maddocks, J. H.: Stability and folds. Arch. Rat. Mech. Anal., 99, 301-328 (1987).
[9] Shimakura, N.: Elliptic Partial Differential Operators. Kinokuniya, Tokyo (1978) (in Japanese).

