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1. Statement of the problem. Let us consider a two-phase Stefan
problem described as follows" Find a function u-u(t, x) on Q--(O, T)
(0, 1), 0(Tc, and a curve x--l(t), 0/1, on [0, T] such that

in Qi,
(0.1) O(u)--a(u)+h(t,x)=

f inQ?,
h(t, x) g(u(t, x)) or a.e. (t, x) e Q,
Qi ={(t, x) OtT, Oxl(t)}, Q7 ={(t, x) OtT, l(t)xl},
[u(t, /(t))=0 or

(0.2)
[/’(t)=-a(u(t, l(t)-))+a(u(t, l(t)+)) or a.e. t e (0, T), /(0)=/0,

(0.3) (u(0, x))=v0(x) for 0<xl,

[a(u(t, 0+)) e b(u(t, 0)) for a.e. t e (0, T),
(0.4)

I--a(u(t, 1--)) e 3b(u(t, 1)) for a.e. t e (0, T),
where p" RR is a non-decreasing Yunction and a" R--+R is a continuous
Yunction g(o) is a maximal monotone graph in RX R; f0, f are functions
on Q l0 is a number with 0< l0 < 1 and v0 is a function on the interval (0, 1)

is a proper 1.s.c. convex function on R and 3b is its sub-for i=0, 1, b,
differential. We note that the expression (0.4) includes various boundary
conditions such as Dirichlet, Neumann and Signorini boundary conditions.

In the case when a(r)=r and g(r)--O, Crowley [2] proved the unique-
hess o solution to the multi-dimensional problem in a weak fcrmulation
and recently Cannon-Yin [1] established an existence result for (0.1)-(0.4)
under the additional restriction that p is strictly increasing in R.

In this paper, we suppcse that p is non-decreasing, and we are very
interested in the additional heat source term g(u), which causes unusual
behavior of the solution {u, 1}. For instance, as is seen from the following
example, 90(t) ={x e [0, 1] u(t, x)=0} has psitive linear measure. This
region/20(t) is called the mushy region and was analized by M. Bertsch, P.
de Mottoni and L. A. Peletier [1, 2].

Example. Suppose that T=3,

!-1 forr>l,
p(r) for ]rl_<_ 1,

+1 lorrY--l,

[ -11g()=sign(r)= ,1]

a(r) =r,

for rO,
for r--0
for r<0,

fo=f =0,
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where

go(t)

and

Then

u(t, x)=

b(r)= [0oo
1 1

1
8
1 1(-1)

(i=0, 1)

Vo(X)

or Ogt<__l,

or 1

or 2t=<3,

g(t) --go(t) or O<_t<_3, lo=,

(x-)
0

-(--)

2or x e [0, -],
or x e (-, -),
or x e [, 1].

--2- -t)
/(t)=--I forO<t<3,_

[ t 1]for (t, x) e [0, 1] O, -+-(- )for (t, x) e [0, 1]X +, ----+
/or (t, z) [O, 1]X --+,1

[ 1]or (t, x) e (1, 2] X O,

or (t, x)e (1, 2] (, 1],
[ 1 1for(t,x) e(2,3]X O,--t+l

or(t,x) e(2,3]X --t+l,t
[1 1for(t,z) e(2, g]X t, 1

give a solution of our Stefan problem. In this example, 90(t)--{x e [0, 1]
u(t, x)=O} has positive linear measure or t e [0, 1)U (2, 3] and reduces to
one point or t e [1, 2].

2. Main results. We begin with the precise assumptions (al)-(a4)
on p, a, g, and f, b{, i=0, 1, v0, under which Stefan problem (0.1)-(0.4) is
discussed,

(al) p" RR is a Lipschitz continuous and non-decreasing unction
with p(O)=O.
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(a2) a" R-R is a continuous unction such that
ao!rl<=a(r)r<=alrl or any r e R,
ao(r--r’)-<=a(r)--a(r’) or any r, r’ e R, rr’,

where a0 and a are positive constants and 2pc.

(a3) g(.) is a maximal monotone graph inRR and g= in R, where

" R--.>R is a Lipschitz continuous, convex and non-negative unction on R
with (0)=0 and 3 denotes its subdifferential in R.

is a proper 1.s.c. convex unction(a4) For i=0, I and each t e [0, T], b
on R which satisfies the 2ollowing condition (*) or given unctions a0 e
W’.(0, T), e W"(0, T)"

(*) For any O<=sgt<_T and reD(b)--{reR; b(r)c} there exists
r’ e D(b) such that

r’-- r l<=lo(t) o(S)I(1 +lrl+lb(r)1/),
b b(r)<=(r )

Furthermore or b, f, i=0. 1, v0, 10, we assume that
(a5-1) 3b(r) (-- c, 0] or any r0 and t e [0, T], and ob(r) [0, c)

or any r0 and t e [0, T]
(a5-2) fo, fl e WI’2(O, T L2(0, 1)) LI(0, T; L(0, 1)), f00, f0 a.e. on

Q.
(a5-3) 0/01 and there is a unction u0 e W’(0, 1) such that Uo(i)e

D(b), or i--0, 1 and u00 on [0,/0], u0g0 on [/0, 1], Vo--p(Uo).
Now we denote by P=P(b, bi g ;fo, f Vo 10) the system (0.1)-(0.4) and

say that a pair {u, l} is a solution o P on [0, T], i the following properties
(i)-(iii) are ulfilled"

( i p(u) e W’(O, T; L:(O, 1)), u e L(0, T; W.’(0, 1))
e W’(0, T)(c C([0, T])) with 0 1 on [0, T]

(ii) (0.1) holds in the sense o ’(Q) and _q)’(QT) or some h e L(Q)
with h(t, x) e g(u(t, x)) or a.e. (t, x) e Q, and (0.2) and (0.3) are satisfied.

(iii) b’)(u(., i)) is bounded on [0, T], u(t, i) e D(3b) for a.e. t e [0, T],
i=0, 1, and (0.4) holds.

The main results o the present paper are stated as ollows"
Theorem 1. Suppose that assumptions (al)-(a5) hold. Then there

exists To with OTo=T such that problem P has at least one solution {u, l}
on [0, T0].

Theorem 2. Let p and a be functions satisfying (al) and (a2) respec-
tively, and let P=P(b, bi; g; fo, fl; Vo, lo) and P=P(, ; ;f0,fl 0, i0) be

Stefan problems, where Stefan data of P and P are supposed to satisfy
conditions (a3)-(a5). Further suppose that

[(r’-’)(r-) 0 for and r e D(3b), e D(b),
[ r e b(r), --e 3(),i--0, 1, and t e [0, T];
(r’-- ’)(r--) :=>: 0 for any r, e R,

r’ e g(r) ’ e () f <=fo, f f a. e. on G.
Let {u, l} and {, i} be solutions of P and P on [0, T], respectively. Then,
we have for any
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[p(u(t)) p((t))] / ],(0,, + (l(t) i(t))
(2.1) <= {l [P(U(S)) p(a(s))] I.0,)+(l(s)-i(s)) }

Corollarg. Ude the memtio i Theorem 1, roblem P

3. Sketch of the proofs. or 0<2< l0 <1--2 and >0 we pu
K(T)={1 e C([0, T])" 5/(t)1--5, l’l,(o,r)L, /(0)=/0}.

For any e K(T) we denote by CP(l) the ollowing initial-boundary value
problem ormulated in the non-cylindrical domains Q? and Q?"

p(u),-a(u)+ h(t, x)=

h e L2(Q), h(t, x) e g(u(t, x))
(u(O, x))=vo(x)
u(t,/(t)) 0
a(u(t, 0+)) e 3b(u(t, 0))
--a(u(t, 1--)) e b(u(t, 1))

in Q?,
in Q[,
for a.e. (t, x) e Q,
for
for Ot<_T,
for a.e. t e [0, T]
for a.e. t e [0, T].

The existence and uniqueness o solution to CP(1) were obtained by Ken-
mochi-Pawlow [6; Theorems 1.1, 1.2]. Using the solution u to CP(1) or
each in K(T), we define a mapping N: K(T)--+C([O, T]) by

[N1](t) lo--.[: a(u(s, l(s)-))ds +.[: a(u(s, l(s)+))ds.

By virtue o Kenmochi-Pawlow [6; Theorem 1.4], we see that N:K(T)--.
C([0, T]) is a continuous mapping with respect to the topology of C([0, T]).
Also, or sufficiently small T00, N maps K(To) into itself. It is obvious
that K(To) is non-empty, compact and convex in C([0, To]). Therefore by a
well-known fixed point theorem, there is in K(To) such that Nl=l. Clearly
the pir {u, l} gives a solution to P on [0, To] which has the required pro-
perties. Thus we have Theorem 1. Also, Theorem 2 can be derived by
using a uniqueness result in [5].
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