108. Two-Phase Stefan Problems for ParabolicElliptic Equations

By Toyohiko Aiki
Department of Mathematics, Graduate School of Sciences, Chiba University
(Communicated by Kôsaku Yosida, M. J. A., Dec. 12, 1988)

1. Statement of the problem. Let us consider a two-phase Stefan problem described as follows: Find a function $u=u(t, x)$ on $Q=(0, T) \times$ $(0,1), 0<T<\infty$, and a curve $x=l(t), 0<l<1$, on $[0, T]$ such that

$$
\begin{align*}
& \rho(u)_{t}-a\left(u_{x}\right)_{x}+h(t, x)=\left[\begin{array}{ll}
f_{0} & \text { in } Q_{l}^{+} \\
f_{1} & \text { in } Q_{l}^{-}
\end{array}\right. \tag{0.1}\\
& h(t, x) \in g(u(t, x)) \text { for a.e. }(t, x) \in Q \\
& Q_{l}^{+}=\{(t, x) ; 0<t<T, 0<x<l(t)\}, Q_{l}^{-}=\{(t, x) ; 0<t<T, l(t)<x<1\}, \\
& {\left[\begin{array}{ll}
u(t, l(t))=0 \quad \text { for } 0 \leqq t \leqq T \\
l^{\prime}(t)=-a\left(u_{x}(t, l(t)-)\right)+a\left(u_{x}(t, l(t)+)\right) \quad \text { for a.e. } t \in(0, T), l(0)=l_{0} \\
\rho(u(0, x))=v_{0}(x) \quad \text { for } 0 \leqq x \leqq 1, \\
{\left[\begin{array}{ll}
a\left(u_{x}(t, 0+)\right) \in \partial b_{0}^{t}(u(t, 0)) & \text { for a.e. } t \in(0, T) \\
-a\left(u_{x}(t, 1-)\right) \in \partial b_{1}^{t}(u(t, 1)) & \text { for a.e. } t \in(0, T)
\end{array}\right.}
\end{array}, l\right.}
\end{align*}
$$

where $\rho: R \rightarrow R$ is a non-decreasing function and $a: R \rightarrow R$ is a continuous function; $g(\cdot)$ is a maximal monotone graph in $R \times R ; f_{0}, f_{1}$ are functions on $Q ; l_{0}$ is a number with $0<l_{0}<1$ and v_{0} is a function on the interval $(0,1)$; for $i=0,1, b_{i}^{t}$ is a proper l.s.c. convex function on R and ∂b_{i}^{t} is its subdifferential. We note that the expression (0.4) includes various boundary conditions such as Dirichlet, Neumann and Signorini boundary conditions.

In the case when $a(r)=r$ and $g(r) \equiv 0$, Crowley [2] proved the uniqueness of solution to the multi-dimensional problem in a weak fcrmulation and recently Cannon-Yin [1] established an existence result for (0.1)-(0.4) under the additional restriction that ρ is strictly increasing in R.

In this paper, we suppose that ρ is non-decreasing, and we are very interested in the additional heat source term $g(u)$, which causes unusual behavior of the solution $\{u, l\}$. For instance, as is seen from the following example, $\Omega_{0}(t):=\{x \in[0,1] ; u(t, x)=0\}$ has positive linear measure. This region $\Omega_{0}(t)$ is called the mushy region and was analized by M. Bertsch, P. de Mottoni and L. A. Peletier [1, 2].

Example. Suppose that $T=3$,

$$
\begin{aligned}
& \rho(r)=\left[\begin{array}{ll}
r-1 & \text { for } r>1, \\
0 & \text { for }|r| \leqq 1,
\end{array} \quad a(r)=r,\right. \\
& r+1 \\
& \text { for } r<-1, \\
& g(r)=\operatorname{sign}(r)=\left[\begin{array}{ll}
1 & \text { for } r>0, \\
{[-1,1]} & \text { for } r=0, \\
-1 & \text { for } r<0,
\end{array} \quad f_{0}=f_{1}=0,\right.
\end{aligned}
$$

$$
b_{i}^{t}(r)=\left[\begin{array}{ll}
0 & \text { if } r=g_{i}(t), \quad(i=0,1) \\
\infty & \text { if } r \neq g_{i}(t),
\end{array} \quad(i=1 .\right.
$$

where

$$
g_{0}(t)= \begin{cases}\frac{1}{2}\left(\frac{1}{4} t+\frac{1}{4}\right)^{2} & \text { for } 0 \leqq t \leqq 1, \\ \frac{1}{8} & \text { for } 1<t \leqq 2, \quad g_{1}(t)=-g_{0}(t) \quad \text { for } 0 \leqq t \leqq 3, l_{0}=\frac{1}{2}, \\ \frac{1}{2}\left(\frac{1}{4} t-1\right)^{2} & \text { for } 2<t \leqq 3\end{cases}
$$

and

$$
v_{0}(x)=\left[\begin{array}{ll}
\frac{1}{2}\left(x-\frac{1}{4}\right)^{2} & \text { for } x \in\left[0, \frac{1}{4}\right] \\
0 & \text { for } x \in\left(\frac{1}{4}, \frac{3}{4}\right) \\
-\frac{1}{2}\left(x-\frac{3}{4}\right)^{2} & \text { for } x \in\left[\frac{3}{4}, 1\right]
\end{array}\right.
$$

Then

$$
\begin{gathered}
u(t, x)=\left[\begin{array}{ll}
\frac{1}{2}\left\{x-\left(\frac{1}{4} t+\frac{1}{4}\right)\right\}^{2} & \text { for }(t, x) \in[0,1] \times\left[0, \frac{t}{4}+\frac{1}{4}\right] \\
0 & \text { for }(t, x) \in[0,1] \times\left(\frac{t}{4}+\frac{1}{4},-\frac{t}{4}+\frac{3}{4}\right), \\
-\frac{1}{2}\left\{x-\left(-\frac{1}{4} t+\frac{3}{4}\right)\right\}^{2} & \text { for }(t, x) \in[0,1] \times\left[-\frac{t}{4}+\frac{3}{4}, 1\right] \\
\frac{1}{2}\left(x-\frac{1}{2}\right)^{2} & \text { for }(t, x) \in(1,2] \times\left[0, \frac{1}{2}\right] \\
-\frac{1}{2}\left(x-\frac{1}{2}\right)^{2} & \text { for }(t, x) \in(1,2] \times\left(\frac{1}{2}, 1\right] \\
\frac{1}{2}\left\{x-\left(-\frac{1}{4} t+1\right)\right\}^{2} & \text { for }(t, x) \in(2,3] \times\left[0,-\frac{1}{4} t+1\right] \\
0 & \text { for }(t, x) \in(2,3] \times\left(-\frac{1}{4} t+1, \frac{1}{4} t\right) \\
-\frac{1}{2}\left(x-\frac{1}{4} t\right)^{2} & \text { for }(t, x) \in(2,3] \times\left[\frac{1}{4} t, 1\right]
\end{array}\right. \\
l(t)=\frac{1}{2} \text { for } 0 \leqq t \leqq 3,
\end{gathered}
$$

give a solution of our Stefan problem. In this example, $\Omega_{0}(t)=\{x \in[0,1]$; $u(t, x)=0\}$ has positive linear measure for $t \in[0,1) \cup(2,3]$ and reduces to one point for $t \in[1,2]$.
2. Main results. We begin with the precise assumptions (a1)-(a4) on ρ, a, g, and $f_{i}, b_{i}^{t}, i=0,1, v_{0}$, under which Stefan problem (0.1)-(0.4) is discussed,
(a1) $\rho: R \rightarrow R$ is a Lipschitz continuous and non-decreasing function with $\rho(0)=0$.
(a2) $a: R \rightarrow R$ is a continuous function such that

$$
\begin{array}{ll}
a_{0}|r|^{p} \leqq a(r) r \leqq a_{1}|r|^{p} & \text { for any } r \in R, \\
a_{0}\left(r-r^{\prime}\right)^{p-1} \leqq a(r)-a\left(r^{\prime}\right) & \text { for any } r, r^{\prime} \in R, r \geqq r^{\prime},
\end{array}
$$

where a_{0} and a_{1} are positive constants and $2 \leqq p<\infty$.
(a3) $g(\cdot)$ is a maximal monotone graph in $R \times R$ and $g=\partial \hat{g}$ in R, where $\hat{g}: R \rightarrow R$ is a Lipschitz continuous, convex and non-negative function on R with $\hat{g}(0)=0$ and $\partial \hat{g}$ denotes its subdifferential in R.
(a4) For $i=0,1$ and each $t \in[0, T], b_{i}^{t}$ is a proper l.s.c. convex function on R which satisfies the following condition (*) for given functions $\alpha_{0} \in$ $W^{1,2}(0, T), \alpha_{1} \in W^{1,1}(0, T)$:
$\left.{ }^{*}\right)$ For any $0 \leqq s \leqq t \leqq T$ and $r \in D\left(b_{i}^{s}\right) \equiv\left\{r \in R ; b_{i}^{s}(r)<\infty\right\}$ there exists $r^{\prime} \in D\left(b_{i}^{t}\right)$ such that

$$
\begin{aligned}
& \left|r^{\prime}-r\right| \leqq\left|\alpha_{0}(t)-\alpha_{0}(s)\right|\left(1+|r|+\left|b_{i}^{s}(r)\right|^{1 / p}\right), \\
& b_{i}^{t}\left(r^{\prime}\right)-b_{i}^{s}(r) \leqq\left|\alpha_{1}(t)-\alpha_{1}(s)\right|\left(1+|r|^{p}+\left|b_{i}^{s}(r)\right|\right) .
\end{aligned}
$$

Furthermore for $b_{i}^{t}, f_{i}, i=0,1, v_{0}, l_{0}$, we assume that
(a5-1) $\quad \partial b_{0}^{t}(r) \subset(-\infty, 0]$ for any $r<0$ and $t \in[0, T]$, and $\partial b_{1}^{t}(r) \subset[0, \infty)$ for any $r>0$ and $t \in[0, T]$;
(a5-2) $\quad f_{0}, f_{1} \in W^{1,2}\left(0, T ; L^{2}(0,1)\right) \cap L^{1}\left(0, T ; L^{\infty}(0,1)\right), f_{0} \geqq 0, f_{1} \leqq 0$ a.e. on Q.
(a5-3) $0<l_{0}<1$ and there is a function $u_{0} \in W^{1, p}(0,1)$ such that $u_{0}(i) \in$ $D\left(b_{i}^{0}\right)$, for $i=0,1$ and $u_{0} \geqq 0$ on $\left[0, l_{0}\right], u_{0} \leqq 0$ on $\left[l_{0}, 1\right], v_{0}=\rho\left(u_{0}\right)$.

Now we denote by $P=P\left(b_{0}^{t}, b_{1}^{t} ; g ; f_{0}, f_{1} ; v_{0} ; l_{0}\right)$ the system (0.1)-(0.4) and say that a pair $\{u, l\}$ is a solution of P on $[0, T]$, if the following properties (i)-(iii) are fulfilled:
(i) $\quad \rho(u) \in W^{1,2}\left(0, T ; L^{2}(0,1)\right), u \in L^{\infty}\left(0, T ; W^{1, p}(0,1)\right)$ $l \in W^{1,2}(0, T)(\subset C([0, T]))$ with $0<l<1$ on $[0, T]$;
(ii) (0.1) holds in the sense of $\mathscr{D}^{\prime}\left(Q_{l}^{+}\right)$and $\mathscr{D}^{\prime}\left(Q_{l}^{-}\right)$for some $h \in L^{2}(Q)$ with $h(t, x) \in g(u(t, x))$ for a.e. $(t, x) \in Q$, and (0.2) and (0.3) are satisfied.
(iii) $b_{i}^{(\cdot)}(u(\cdot, i))$ is bounded on $[0, T], u(t, i) \in D\left(\partial b_{i}^{t}\right)$ for a.e. $t \in[0, T]$, $i=0,1$, and (0.4) holds.

The main results of the present paper are stated as follows:
Theorem 1. Suppose that assumptions (a1)-(a5) hold. Then there exists T_{0} with $0<T_{0} \leqq T$ such that problem P has at least one solution $\{u, l\}$ on $\left[0, T_{0}\right]$.

Theorem 2. Let ρ and a be functions satisfying (a1) and (a2) respectively, and let $P=P\left(b_{0}^{t}, b_{1}^{t} ; g ; f_{0}, f_{1} ; v_{0}, l_{0}\right)$ and $\bar{P}=P\left(\bar{b}_{0}^{t}, \bar{b}_{1}^{t} ; \bar{g} ; \bar{f}_{0}, \bar{f}_{1} ; \bar{v}_{0}, \bar{l}_{0}\right)$ be Stefan problems, where Stefan data of P and \bar{P} are supposed to satisfy conditions (a3)-(a5). Further suppose that
$\left[\begin{array}{c}\left(r^{\prime}-\bar{r}^{\prime}\right)(r-\bar{r})^{+} \geqq 0 \text { for and } r \in D\left(\partial b_{i}^{t}\right), \bar{r} \in D\left(\partial \bar{b}_{i}^{t}\right), \\ r^{\prime} \in \partial b_{i}^{t}(r), \bar{r}^{\prime} \in \partial \bar{b}_{i}^{t}(\bar{r}), i=0,1, \text { and } t \in[0, T] ;\end{array}\right.$
$\left[\begin{array}{l}\left(r^{\prime}-\bar{r}^{\prime}\right)(r-\bar{r})^{+} \geqq 0 \text { for any } r, \bar{r} \in R, \\ r^{\prime} \in g(r), \bar{r}^{\prime} \in \bar{g}(\bar{r}), f_{0} \leqq \bar{f}_{0}, f_{1} \leqq \bar{f}_{1} \text { a.e. on } Q .\end{array}\right.$
Let $\{u, l\}$ and $\{\bar{u}, \bar{l}\}$ be solutions of P and \bar{P} on $[0, T]$, respectively. Then, we have for any $0 \leqq s \leqq t \leqq T$

$$
\begin{align*}
& \left|[\rho(u(t))-\rho(\bar{u}(t))]^{+}\right|_{L^{1}(0,1)}+(l(t)-\bar{l}(t))^{+} \\
& \quad \leqq\left\{\left|[\rho(u(s))-\rho(\bar{u}(s))]^{+}\right|_{L^{1}(0,1)}+(l(s)-\bar{l}(s))^{+}\right\} \tag{2.1}\\
& \quad \times \exp \left\{\int_{s}^{t}\left(\left|f_{0}(\tau)\right|_{L^{\infty}(0,1)}+\left|\bar{f}_{1}(\tau)\right|_{L^{\infty}(0,1)}\right) d \tau\right\} .
\end{align*}
$$

Corollary. Under the same assumptions as in Theorem 1, problem P has at most one solution.
3. Sketch of the proofs. For $0<2 \delta<l_{0}<1-2 \delta$ and $L>0$ we put

$$
K(T)=\left\{l \in C([0, T]): \delta \leqq l(t) \leqq 1-\delta,\left|l^{\prime}\right|_{L^{2}(0, T)} \leqq L, l(0)=l_{0}\right\}
$$

For any $l \in K(T)$ we denote by $C P(l)$ the following initial-boundary value problem formulated in the non-cylindrical domains Q_{i}^{+}and Q_{l}^{-}:

$$
\begin{aligned}
& \rho(u)_{t}-\alpha\left(u_{x}\right)_{x}+h(t, x)=\left[\begin{array}{ll}
f_{0} & \text { in } Q_{l}^{+}, \\
f_{1} & \text { in } Q_{l}^{-},
\end{array}\right. \\
& h \in L^{2}(Q), h(t, x) \in g(u(t, x)) \text { for a.e. }(t, x) \in Q \text {, } \\
& \rho(u(0, x))=v_{0}(x) \quad \text { for } 0 \leqq x \leqq 1 \text {, } \\
& u(t, l(t))=0 \quad \text { for } 0 \leqq t \leqq T \text {, } \\
& a\left(u_{x}(t, 0+)\right) \in \partial b_{0}^{t}(u(t, 0)) \quad \text { for a.e. } t \in[0, T] \\
& -a\left(u_{x}(t, 1-)\right) \in \partial b_{1}^{t}(u(t, 1)) \quad \text { for a.e. } t \in[0, T] .
\end{aligned}
$$

The existence and uniqueness of solution to $C P(l)$ were obtained by Ken-mochi-Pawlow [6; Theorems 1.1, 1.2]. Using the solution u^{l} to $C P(l)$ for each l in $K(T)$, we define a mapping $N: K(T) \rightarrow C([0, T])$ by

$$
[N l](t)=l_{0}-\int_{0}^{t} a\left(u_{x}^{l}(s, l(s)-)\right) d s+\int_{0}^{t} a\left(u_{x}^{l}(s, l(s)+)\right) d s
$$

By virtue of Kenmochi-Pawlow [6; Theorem 1.4], we see that $N: K(T) \rightarrow$ $C([0, T])$ is a continuous mapping with respect to the topology of $C([0, T])$. Also, for sufficiently small $T_{0}>0, N$ maps $K\left(T_{0}\right)$ into itself. It is obvious that $K\left(T_{0}\right)$ is non-empty, compact and convex in $C\left(\left[0, T_{0}\right]\right)$. Therefore by a well-known fixed point theorem, there is l in $K\left(T_{0}\right)$ such that $N l=l$. Clearly the pair $\left\{u^{l}, l\right\}$ gives a solution to P on $\left[0, T_{0}\right]$ which has the required properties. Thus we have Theorem 1. Also, Theorem 2 can be derived by using a uniqueness result in [5].

References

[1] M. Bertsch, P. de Mottoni, and L. A. Peletier: Degenerate diffusion and the Stefan problem. Nonlinear Anal., 8, 1311-1336 (1984).
[2] --: The Stefan problem with heating; Appearance and disappearance of a mushy region. Trans. Amer. Math. Soc., 239, 677-691 (1986).
[3] J. R. Cannon and H.-M. Yin: On the existence of the weak solutions and the regularity of the free boundary to a one-dimensional degenerate Stefan problem. J. Differential Equations, 73, 104-118 (1988).
[4] A. B. Crowley: On the weak solution of moving boundary problem. J. Inst. Math. Appl., 24, 43-57 (1979).
[5] N. Kenmochi: A new proof of the uniqueness of solutions to two-phase Stefan problems for nonlinear parabolic equations. Tech. Rep. Math. Sci., Chiba Univ., no. 9 (1987).
[6] N. Kenmochi and I. Pawlow: A class of nonlinear elliptic-parabolic equations with time-dependent constraints. Nonlinear Anal., 11, 1181-1202 (1986).

